Abstract:
A display apparatus capable of providing an expanded viewing window includes a light guide plate including an input coupler and an output coupler; and an image providing apparatus facing the input coupler to provide an image to the input coupler. The input coupler may include a plurality of sub input couplers configured to propagate the image provided from the image providing apparatus at different angles in the light guide plate.
Abstract:
A beam deflector includes a first wavelength selective polarizer configured to convert a polarization state of light in a first wavelength band into a first polarization state, a first liquid crystal deflector including liquid crystal molecules and an optical path change surface to deflect light incident from the first wavelength selective polarizer, and a controller configured to control the first liquid crystal deflector to adjust an angle of the first optical path change surface.
Abstract:
A liquid crystal light deflector includes a first electrode layer including line electrodes, a second electrode layer including a common electrode, and a liquid crystal layer that forms an electrical prism using liquid crystal molecules according to an electric field formed between the first and second electrode layers. The orientations of the liquid crystal molecules may be reset by an electric field formed between line electrodes of adjacent channels within the first electrode layer. A method of deflecting light includes controlling the first electrode layer and the second electrode layer to reset the orientation of the liquid crystal molecules prior to forming an electrical prism in the liquid crystal layer.
Abstract:
A holographic display device includes a light source configured to emit light, the light including first light of a first wavelength, second light of a second wavelength, and third light of a third wavelength; a spatial light modulator configured to form a holographic pattern to modulate the light emitted from the light source and to produce a holographic image; and a focusing optical system configured to focus the holographic image. The focusing optical system includes a fixed-focus optical system having a fixed focal length, and a variable focus optical system having a focal length that is changed by electrical control. The fixed-focus optical system is configured to focus the first light of the first wavelength, the second light of the second wavelength, and the third light of the third wavelength on different positions, respectively, on an optical axis to cancel a chromatic aberration by the variable focus optical system.
Abstract:
A backlight unit for a binocular-holographic display device and a holographic display device including the same are provided. The backlight unit includes a light source unit which outputs light, a first beam expansion unit which expands, in a first direction, the light output from the light source unit, a second beam expansion unit which expands, in a second direction perpendicular to the first direction, the light output from the first beam expansion unit, and a beam deflection unit which diffracts light incident on the first beam expansion unit. The holographic display device includes the backlight unit, a field lens, and a spatial light modulator.
Abstract:
A light deflector includes a first light deflecting member disposed on a transparent substrate and has a refractive index that varies depending on a magnitude of an electric field applied thereto. The light deflector may adjust the refractive index by applying electric fields differently according to regions of the first light deflecting member or time divisions. The light deflector may have a smaller size than a light deflector including an optical device, and may easily adjust the refractive index.
Abstract:
A method and apparatus for detecting an X-ray, the apparatus includes a detector which comprises a pixel array in which a plurality of pixels for detecting an X-ray transmitted by a body to be examined are arranged in a matrix form, a read-out unit which reads out electrical signals corresponding to the detected X-ray from the pixel array, and a reset controller which controls the pixel array to be reset after the X ray is detected, by performing switching so that the plurality of pixels of the pixel array are commonly connected to the reset power source.
Abstract:
Provided is a beam deflector including a first sub deflector configured to deflect light of a first wavelength band in a first direction and a second direction that intersects the first direction, and convert a polarization direction of the light of the first wavelength band, and a second sub deflector configured to deflect light of a second wavelength band, that is different from the first wavelength band in the first direction and the second direction, and convert a polarization direction of the light of the second wavelength band, wherein the first sub deflector and the second sub deflector are sequentially provided such that the light of the first wavelength band and the light of the second wavelength band sequentially pass through the first sub deflector and the second sub deflector.
Abstract:
A geometric phase optical element and a three-dimensional display apparatus including the same are provided. The geometric phase optical element includes: a liquid crystal layer; a first electrode on a surface of the liquid crystal layer; and a second electrode on another surface of the liquid crystal layer, wherein, when no voltage is applied to the first and second electrodes, the liquid crystal layer is configured such that a phase difference according to an arrangement of the liquid crystal is π and light transmitted through the liquid crystal layer is diffracted by a first deflection angle, and when a first voltage that causes the phase difference according to the arrangement of the liquid crystal to become π/2 is applied to the first and second electrodes, the liquid crystal layer is configured such that the light transmitted through the liquid crystal layer is diffracted by a second deflection angle.
Abstract:
Provided are methods of processing a holographic image and apparatuses using the methods. A method includes obtaining image data with respect to a three-dimensional (3D) object, obtaining interference patterns in a computer-generated hologram (CGH) plane by performing a Fourier transform on the image data, and generating a CGH with respect to the 3D object based on the interference patterns, wherein the Fourier transform is performed based on a focal length of an eye lens of an observer.