Abstract:
Provided are a semiconductor light-emitting array and a method of manufacturing the same. The manufacturing method includes forming a plurality of grooves in a region of a substrate and sequentially growing a first semiconductor layer, an active layer, and a second semiconductor layer on the substrate to form a light-emitting structure layer.
Abstract:
Provided is a display apparatus. The display apparatus may include a monolithic device in which a light emitting element array, a transistor array, and a color control member are monolithically provided on one substrate. The display apparatus may include a first layered structure including the light emitting element array, a second layered structure including the transistor array, and a third layered structure including the color control member, wherein the second layered structure may be between the first layered structure and the third layered structure. The light emitting element array may include a plurality of light emitting elements comprising an inorganic material. The plurality of light emitting elements may have a vertical nanostructure.
Abstract:
A method for forming a silicon film may be performed using a microheater including a substrate and a metal pattern spaced apart from the substrate. The silicon film may be formed on the metal pattern by applying a voltage to the metal pattern of the microheater to heat the metal pattern and by exposing the microheater to a source gas containing silicon. The silicon film may be made of polycrystalline silicon. A method for forming a pn junction may be performed using a microheater including a substrate, a conductive layer on the substrate, and a metal pattern spaced apart from the substrate. The pn junction may be formed between the metal pattern and the conductive layer by applying a voltage to the metal pattern of the microheater to heat the metal pattern. The pn junction may be made of polycrystalline silicon.
Abstract:
Provided is a nanorod light-emitting device including a support layer, a first-type semiconductor nanocore protruding from an upper surface of the support layer and including a semiconductor material doped as a first conductivity type, a mask layer on an upper surface of the support layer and extending to a first height of the first-type semiconductor nanocore in a vertical direction and adjacent to a surface of the first-type semiconductor nanocore, a light-emitting layer having a multi-quantum well structure adjacent to a portion of the first-type semiconductor nanocore above the first height in the vertical direction, and a second-type semiconductor layer adjacent to a surface of the light-emitting layer and including a semiconductor material doped as a second conductivity type.
Abstract:
A nitride-based semiconductor light-emitting device, including a first semiconductor layer, wherein the first semiconductor layer is nitride-based and has a first conductivity type; a light-emitting layer provided on the first semiconductor layer, wherein the light-emitting layer may include a nitride-based semiconductor including Indium (In); a second semiconductor layer provided on the light-emitting layer, wherein the second semiconductor layer is nitride-based and has a second conductivity type; and a strain relaxation layer provided between the first semiconductor layer and the light-emitting layer, and including an AlGaN layer having a protrusion whose horizontal cross-section area decreases as the protrusion extends in a vertical direction from the second semiconductor layer to the first semiconductor layer.
Abstract:
A single crystal semiconductor structure includes: an amorphous substrate; a single crystal semiconductor layer provided on the amorphous substrate; and a thin orienting film provided between the amorphous substrate and the single crystal semiconductor layer, wherein the thin orienting film is a single crystal thin film, and the thin orienting film has a non-zero thickness that is equal to or less than 10 times a critical thickness hc.
Abstract:
A nanorod light-emitting diode includes a first conductivity-type semiconductor layer including a body having a cylindrical shape, and a hexagonal pyramid shape provided on the body, an active layer covering an upper surface of the hexagonal pyramid shape, a second conductivity-type semiconductor layer covering an upper surface of the active layer, an electrode layer covering an upper surface of the second conductivity-type semiconductor layer, and an insulating layer formed to surround a side surface of the body and to expose a lower region of the side surface of the body.
Abstract:
A semiconductor light emitting diode (LED) and a method of manufacturing the same are provided. The LED includes a first semiconductor layer; a plurality of active elements spaced apart on the first semiconductor layer and each having a width less than a width of the first semiconductor layer; and a second semiconductor layer disposed on the plurality of active elements.
Abstract:
A display device includes: a plurality of light emitting elements including a first semiconductor layer, each of the plurality of light emitting elements including a second semiconductor layer provided under the first semiconductor layer and an active layer interposed between the first semiconductor layer; a plurality of partition walls extending from the first semiconductor layer; and a plurality of color conversion layers provided on the plurality of light emitting elements in correspondence with the plurality of light emitting elements and spaced apart from each other by the plurality of partition walls, each of the plurality of color conversion layers including a first color conversion layer and a second color conversion layer stacked on the first color conversion layer.
Abstract:
Provided is a display apparatus including a first semiconductor layer having a first surface and a second surface opposite to each other, a plurality of partitions protruding from the first surface, and a plurality of opening areas between the plurality of partitions, a plurality of active layers provided opposite to the plurality of opening areas on the second surface of the first semiconductor layer, a plurality of second semiconductor layers respectively provided on the plurality of active layers opposite to the first semiconductor layer, a separation film provided between two adjacent active layers among the plurality of active layers and between two adjacent second semiconductor layers among the plurality of second semiconductor layers, and a plurality of color conversion layers provided in the plurality of opening areas on the first surface of the first semiconductor layer.