Abstract:
An exemplary embodiment of the present invention provides a liquid crystal display, including: a first substrate; a second substrate facing the first substrate; a liquid crystal layer formed between the first substrate and the second substrate; and a first color pixel area, a second color pixel area, and a third color pixel area formed on the first substrate or the second substrate, wherein the first, second, and third color pixel areas respectively include one of a red filter, a green filter, and a blue filter, and a cross-section of the blue filter has an at least approximately parabolic or semicircular shape. According to exemplary embodiments of the present invention, it is possible to prevent excessively yellow images and improve luminance thereof by changing a shape of a blue color filter included in the liquid crystal display.
Abstract:
A phase shift device includes a phase shift mask which includes a transparent substrate, and a phase shift pattern which is provided on the transparent substrate, and includes a first area having a first thickness, a second area having a second thickness which is less than the first thickness, a first opening having a first opening width and defined at the first area, and a second opening having a second opening width and defined at the second area.
Abstract:
A display apparatus includes gate lines configured to receive gate signals, data lines arranged to cross the gate lines and configured to receive data voltages, and pixels grouped into first pixel groups and second pixel groups and connected to the gate lines and the data lines. The gate signals are configured to be applied to the gate lines in a predetermined order while skipping at least one gate line without being sequentially and consecutively applied to two gate lines adjacent to each other among the gate lines.
Abstract:
A liquid crystal display includes: a first substrate; a pixel electrode disposed on the first substrate; a second substrate facing the first substrate; a common electrode disposed on the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate. The common electrode includes a first cross-shaped cutout overlapping the pixel electrode, and a second cutout parallel to an edge of the pixel electrode, the second cutout being separated from the edge of the pixel electrode.
Abstract:
An electric-field exposure method includes forming a display cell. The display cell comprises a pixel electrode electrically connected to a data line and a gate line. A guard-ring line surrounds a display area on which the pixel electrode is disposed. A common electrode overlaps the guard-ring line. A resistance division part is connected to a node which is connected to a data pad and a gate pad. A first electrode and a second electrode are provided with first and second electronic signals, respectively. The first electrode is connected to the guard-ring line. The second electrode is electrically connected to the common electrode. The node is provided with a divided signal obtained by dividing the first and second signals through the resistance division part.