Abstract:
An electronic device includes a control unit determining a program being executed, a display unit including a display area of which a portion is protruded or recessed corresponding to an operation of the determined program, and an input sensor unit sensing an external input applied to the protruded or recessed portion.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a substrate, a plurality of sub-pixels over the substrate, wherein each of the plurality of sub-pixels includes an OLED layer comprising an OLED, wherein the OLED comprises a first electrode, a second electrode facing the first electrode, and an emitting layer therebetween, an encapsulation layer over the OLED layer and comprising at least one inorganic layer and at least one organic layer, a refractive layer comprising a first refractive index layer that is located over the encapsulation layer and has a recess and a second refractive index layer that is located over the first refractive index layer, wherein the second refractive index is greater than the first refractive index, and wherein an upper surface of the refractive layer is flat.
Abstract:
A display device includes a substrate and a thin-film transistor (TFT) array layer located on the substrate and including a first transistor and a second transistor. The display device further includes a first electrode and a second electrode located on the thin-film transistor array layer. The first electrode is connected to an output electrode of the first transistor and the second electrode is connected to an output electrode of the second transistor. The display device additionally includes a light-emitting diode (LED) located on the first electrode. The display device further includes a capping layer covering the LED and including liquid-crystal molecules and a polymer material. The display device additionally includes a transparent electrode located on the capping layer.
Abstract:
A temperature sensing device, temperature sensor using the same and wearable device having the same. In one aspect, the temperature sensing device includes a first layer formed of a temperature sensing material. The resistance of the temperature sensing material is configured to vary in response to changes in temperature. The temperature sensing device further includes a second layer comprising silver nano-particles and a third layer formed of the temperature sensing material. The second layer is interposed between the first and third layers.
Abstract:
An organic light-emitting display apparatus includes: an organic light-emitting device including a plurality of sub-pixels respectively emitting lights of different colors; a color filter formed on the organic light-emitting device in a region corresponding to each of the sub-pixels; a spacer color filter formed in the color filter between red, green, and blue color filters at locations corresponding to non-emitting areas; and a substrate provided on the color filter to encapsulate the organic light-emitting device.
Abstract:
An organic light emitting diode display panel including an upper substrate, an organic light emitting device facing the upper substrate and emitting a light to the upper substrate, and a light extraction layer disposed between the upper substrate and the organic light emitting device, including first and second optical layers each having a polymer network liquid crystal and having different optical properties, and exiting the light to the outside of the upper substrate. The optical property of the polymer network liquid crystal in the first optical layer differs from the optical property of the polymer network liquid crystal in the second optical layer.
Abstract:
An organic light emitting display apparatus wherein a shift of white light caused by a viewing angle is reduced by adjusting an offset distance between one end of a corresponding emission region and one end of the black matrix adjacent to the one end of the corresponding emission region, thereby preventing a white color shift phenomenon at various viewing angles. Accordingly, a certain image is produced regardless of a use environment of a user's viewing angle.
Abstract:
A piezoelectric device, piezoelectric sensor using the same, and wearable device having the same are disclosed. In one aspect, the piezoelectric device includes a piezoelectric layer formed of a piezoelectric material and a first layer formed above the piezoelectric layer and having a carbon nano-structure.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the display includes an OLED layer including a plurality of OLEDs that respectively form a plurality of sub-pixels and an encapsulation layer disposed over the OLED layer. The OLED display also includes an optical film disposed over the encapsulation layer and comprising a reflection control layer, a first lens disposed below the reflection control layer, and a second lens disposed over the reflection control layer, wherein the reflection control layer comprises i) a plurality of color filters respectively corresponding to the sub-pixels, and ii) a light shielding portion disposed between the color filters. The OLED display further includes an intermediate layer disposed between the encapsulation layer and the optical film, wherein the first lens is disposed over sides of at least one sub-pixels and wherein the second lens is disposed over center portions of selected sub-pixels.
Abstract:
An organic light emitting diode display panel including an upper substrate, an organic light emitting device facing the upper substrate and emitting a light to the upper substrate, and a light extraction layer disposed between the upper substrate and the organic light emitting device, including first and second optical layers each having a polymer network liquid crystal and having different optical properties, and exiting the light to the outside of the upper substrate. The optical property of the polymer network liquid crystal in the first optical layer differs from the optical property of the polymer network liquid crystal in the second optical layer.