Abstract:
An apparatus for wirelessly transferring power is provided. The apparatus comprises a first coupler, a second coupler, and a third coupler overlapping at least the first coupler. The apparatus further comprises a ferrimagnetic structure comprising a first portion disposed under the first coupler, a second portion disposed under the second coupler, and a gap defined between the first coupler and the second coupler, the gap physically separating the first portion from the second portion. One or both of the first portion and the second portion comprises a first plurality of ferrimagnetic strips interleaved with a second plurality of ferrimagnetic strips configured to attenuate a magnetic flux passing between the first and second couplers. The first plurality of ferrimagnetic strips are interleaved with the second plurality of ferrimagnetic strips under at least a portion of the first coupler that is overlapped by the third coupler.
Abstract:
A power receiver is configured to supply current to a load and to be wirelessly operatively coupled to a power transmitter and includes a plurality of inductive elements. The power receiver further includes a circuit operatively coupled to the plurality of inductive elements and configured to be selectively switched among a plurality of coupling states. The circuit is further configured to be selectively switched such that each inductive element has a reactance state of a plurality of reactance states. The power receiver further includes a controller configured to select the coupling state and to select the reactance state of each inductive element based on one or more signals indicative of one or more operating parameters of at least one of the power receiver and the power transmitter.
Abstract:
Systems, methods, and apparatus are disclosed for a device for controlling the amount of charge provided to a charge-receiving element in a series-tuned resonant system having a series-tuned resonant charge-receiving element configured to generate a secondary voltage and a secondary current, the series-tuned resonant charge-receiving element comprising a switchable circuit responsive to a first control signal, the switchable circuit configured to alternate between providing the secondary voltage and the secondary current to a charge-receiving element and preventing the secondary voltage and the secondary current from being provided to the charge-receiving element.
Abstract:
Systems and methods for dynamically tuning reactive power in an inductive power transfer system are disclosed. The system comprises a first plurality of coils operably coupled to a respective ferromagnetic material, configured to receive wireless power via the ferromagnetic material from a power source. The system further comprises a plurality of switches configured to selectively control power received by certain of the first plurality of coils. The system further comprises a second plurality of coils configured to receive current from respective ones of the first plurality of coils and deliver wireless power to a wireless power receiver. The system further comprises at least one control unit configured to selectively activate the switches. The switches may be set to provide power from the power source to a portion of the plurality of the second coils or selectively increase or decrease the reactive power load of the power source.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer and particularly wireless power transfer to remote systems such as electric vehicles. In one aspect, a system comprises substantially co-planar first and second receiver coils. The system further comprises a third receiver coil. The system further comprises a controller configured to determine a current of the co-planar first and second receiver coils, a current of the third receiver coil, and a duty cycle of the wireless power transfer receiver device. The controller is configured to enable the co-planar first and second receiver coils, the third receiver coil, or the co-planar first and second receiver coils and the third receiver coil based on a comparison of the current of the co-planar first and second receiver coils, the current of the third receiver coil, and the duty cycle.
Abstract:
Systems, methods, and apparatuses for receiving charging power wirelessly are described herein. One implementation may include an apparatus for receiving charging power wirelessly from a charging transmitter having a transmit coil. The apparatus comprises a receiver communication circuit, coupled to a receive coil and to a load. The receiver communication circuit is configured to receive information associated with at least one characteristic of the charging transmitter. The apparatus further comprises a sensor circuit configured to measure a value of a short circuit current or an open circuit voltage associated with the receive coil. The apparatus further comprises a controller configured to compare the value of the short circuit current or the open circuit voltage to a threshold charging parameter set at a level that provides charging power sufficient to charge the load. The controller may be further configured to initiate receiving the charging power from the charging transmitter when the short circuit current or the open circuit voltage associated with the receive coil is greater than or equal to the threshold charging parameter.
Abstract:
This disclosure provides systems, methods and apparatus for connecting and operating an AC source to a load. In one aspect a power supply topology is provided which may be of particular use in the area of wireless power transfer. The topology allows for a single source to energize one or more conductive structures configured to generate a field, improving power transfer to a power receiver.