Abstract:
The systems, methods, and devices of the various embodiments enable elastic response times to file requests by a server. In this manner, the server may account for unpredictable delay in object/segment availability and reduce the frequency that error messages (e.g., 404 error messages) are returned in response to file requests when file unavailability is temporary and due to network delays.
Abstract:
An example device for advertising a segment availability time when transporting media data includes a middleware unit configured to determine a playback duration, X, for segments of media data, determine a current time at a first scheduled burst, aburst, of a multicast channel (MCH) scheduling period (MSP) for a first segment having segment number a, determine an MSP duration, DMSP, calculate a segment availability time for a second segment having segment number b according to a formula that uses X, aburst, a, b, and DMSP as inputs, and advertise the segment availability time for the second segment.
Abstract:
An example device for processing media data includes one or more processors configured to receive a file including media data, determine that a portion of the file is potentially erroneous, form error-indicative data indicating that the file includes the portion that is potentially erroneous, and store the file and the error-indicative data to a location available to a target application for the media data of the file. Another example device includes one or more processors configured to receive a file including media data, receive a first set of information indicative of one or more removable portions of the file that can be removed from the file, receive a second set of information indicative of a suspect portion of the file, determine one or more of the removable portions that completely overlap the suspect portion, and remove the determined one or more removable portions from the file.
Abstract:
Techniques are provided for a broadcast client of a wireless communication network. A method may include receiving broadcast content via broadcast delivery on a first resource associated with a first set of carriers. The method may include determining, during unicast idle mode, a second set of carriers comprising neighbor carriers in a current cell. The method may include modifying handoff priorities of the first set of carriers and the second set of carriers based on membership of each carrier in a common set of carriers comprising the first and second sets of carriers and further based on a priority order specified by the wireless communication network. The method may include determining whether to hand over to at least one carrier in one of the first and second sets of carriers based on a handoff decision that takes into account the modified handoff priorities.
Abstract:
Diversity enhancement for multiple carrier systems is disclosed which includes generation of a multiplexed multicarrier radio frequency (RF) signal having N carriers organized to be accessed at a rate of one carrier access per multicast channel (MCH) scheduling period (MSP) per carrier of the N carriers, thereby requiring N accesses per MSP duration across the N carriers. The method may also include the base station transmitting the RF signal to a user equipment (UE). In other aspects, the diversity enhancements include the UE receiving a multiplexed multicarrier RF signal having N carriers. The UE may access the N carriers by performing one carrier access per MSP per carrier of the N carriers, thereby performing N accesses per MSP duration across the N carriers.
Abstract:
A device for receiving streaming data includes a broadcast or multicast middleware unit configured to receive the streaming data via a second service and a proxy unit configured to be disposed between the middleware unit and a client application, the proxy unit further configured to receive an indication of whether the streaming data is to be received via a first service or the second service, when the indication indicates that the streaming data is to be received via the first service: disable the middleware unit; and receive the streaming data via the first service, and when the indication indicates that the streaming data is to be received via the second service: activate the middleware unit to receive the streaming data via the second service, wherein the second service comprises at least one of a broadcast service or a multicast service; and receive the streaming data from the middleware unit.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a user service description (USD) message. When a frequency indicated in the USD message is not a current frequency, the apparatus determines that a system information message is received, determines that the frequency indicated in the USD message is included in the system information message, determines that the frequency is a neighboring cell frequency, sets a priority of the frequency to a highest priority, and measures a signal strength of the frequency when the frequency is included in the system information message, performs a cell reselection determination procedure based on the signal strength of the frequency, performs cell reselection to the neighboring cell based on a result of the cell reselection determination procedure, and acquires the multicast service in the neighboring cell on the frequency.
Abstract:
In one example, a method of retrieving media data includes, by a multimedia broadcast multicast service (MBMS) client of a client device: receiving advertisement media data of one or more advertisement groups, receiving an identifier value for one of the advertisement groups from a dynamic adaptive streaming over HTTP (DASH) client of the client device, extracting the advertisement media data of the advertisement group corresponding to the identifier value, and providing the extracted advertisement media data to the DASH client.
Abstract:
Systems, methods, and devices of the various embodiments enable HTTP servers, such as HTTP servers providing segments to DASH clients according to the various embodiments, to pass incomplete versions of segments in response to segment requests from the DASH clients. The various embodiments may enable clients, such as DASH clients, to parse incomplete versions of segments.
Abstract:
Systems, methods, and devices of the various embodiments enable HTTP servers, such as HTTP servers providing segments to DASH clients according to the various embodiments, to pass incomplete versions of segments in response to segment requests from the DASH clients. The various embodiments may enable clients, such as DASH clients, to parse incomplete versions of segments.