Abstract:
Techniques for channel selection in a shared communication medium are disclosed. A communication apparatus may include one or more transceivers, a processor, and memory coupled to the processor and configured to store data and/or instructions. The one or more transceivers may be configured to monitor signaling on a plurality of available channels associated with a communication medium. The processor may be configured to determine an interference level for each of the plurality of available channels based on the monitored signaling, determine that the interference level for each of the plurality of available channels is greater than a first threshold, determine whether a triggering condition is met, and select the first channel of the plurality of channels as an operating channel for a primary radio access technology based on the triggering condition being met, the first channel having an interference level that is greater than a second threshold.
Abstract:
Techniques for managing access to a shared communication medium are disclosed. Scheduling grants may be sent to different access terminals for different sets of resources for uplink transmission on the communication medium. A series of re-contention gaps may be scheduled for access terminal contention within or between the different sets of resources. Uplink and downlink transmission on the communication medium may be silenced during each of the series of re-contention gaps. Moreover, an access terminal may receive a scheduling grant that allocates a set of resources to the access terminal for uplink transmission on a communication medium and contend for access to the communication medium based on the scheduling grant. The access terminal may then selectively transmit uplink traffic over the allocated set of resources based on the contending.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for managing communications are disclosed. The management may comprise, for example, monitoring a shared channel for downlink transmissions associated with a first Radio Access Technologies (RAT) and uplink transmissions associated with the first RAT, identifying a first set of node identifiers associated with the downlink transmissions on the shared channel and a second set of node identifiers associated with the uplink transmissions on the shared channel, and detecting a hidden node operating on the shared channel based on the first set of node identifiers and the second set of node identifiers.
Abstract:
Systems and methods for dynamic bandwidth management for load-based equipment in unlicensed spectrum are disclosed. In an aspect, the disclosure provides a method for dynamic bandwidth management. The method includes obtaining training data by monitoring a plurality of channels in an unlicensed spectrum during a training period. The method further includes determining that at least a first channel of the plurality of channels is available for a transmission. The method also includes determining, based on the training data, whether to wait for an additional channel of the plurality of channels to become available for the transmission. Determining whether to wait may be based on either training data including probabilities that no additional channel is to become available within a transmission opportunity or a machine learning classification of a current state of the backoff counters based on training data including samples of previous states of backoff counters.
Abstract:
Systems and methods for differentiating between LTE and Wi-Fi signals based on distinguishing characteristics thereof are disclosed. A radio or receiver configured for processing signals associated with a first RAT can detect a signal associated with a second RAT, wherein the signals associated with the first RAT and the signal associated with the second RAT are received over a communications medium using an unlicensed frequency spectrum. One or more characteristics of the decoded signal can be detected or identified, such as a pilot or reference signal pattern, an interframe spacing, a cyclic prefix or guard interval structure, a bandwidth utilization, etc. The decoded signal can be determined as relating to the second RAT based at least in part on determining that the one or more characteristics correspond to the second RAT.
Abstract:
Techniques for channel selection and related operations in a shared spectrum environment are disclosed. In one example, a channel selector or the like may be used to select one of a number of available channels as an operating channel based on a comparison of cost functions for each of the available channels, with the cost functions being based on separate utility and penalty metrics. In another example, a channel scanner or the like may be used to trigger a channel scan in response to a channel quality metric indicating poor service for a threshold number or proportion of access terminals. In another example, an operating mode controller may be used to trigger a Time Division Multiplexing (TDM) mode on an operating channel in response to a utilization metric being above a threshold. The TDM mode may cycle operation between activated and deactivated periods in accordance with a TDM communication pattern.
Abstract:
Techniques for managing operation over a communication medium shared between Radio Access Technologies (RATs) are disclosed. In one example, one or more parameters of a Time Division Multiplexing (TDM) communication pattern may be set to define activated periods and deactivated periods for communication over the medium. A first interlace may be selected among a plurality of interlaces for communication over the medium, the first interlace being reserved for a first operator. During the first interlace, transmission over the medium may be cycled in accordance with the TDM communication pattern, and deactivated during a second interlace among the plurality of interlaces that is reserved for a second operator.
Abstract:
Certain aspects of the present disclosure relate to adapting transmitter configuration for efficient concurrent primary user detection through adaptive self-interference cancellation. A wireless transmitting device may schedule a transmission in a shared spectrum. The device may scan at least a portion of the shared spectrum during the transmission to receive a signal. Interference caused by the transmission may he cancelled from the received signal using self-interference cancellation circuitry. The device may determine whether the received signal indicates usage by a primary user of the shared spectrum. In an aspect, the transmission may be a SISO transmission. In another aspect, carrier aggregation may be used for the transmission and a potential carrier may be subject to primary user detection. The device may determine a self-interference cancellation complexity for a combination of carriers including the potential carrier, and may select one or more carriers for aggregation based on the self-interference cancellation complexity.
Abstract:
Techniques for communication management between Radio Access Technologies (RATs) sharing operating spectrum in an unlicensed band of radio frequencies are disclosed. Interference may be mitigated by, for example, receiving signaling via a resource. A first RAT may be used to receive the signaling. Based on the received signaling, utilization of the resource associated with the first RAT may be identified. The identified utilization of the resource may be classified based on an attribute associated with the received signaling and a plurality of thresholds associated with the attribute. The plurality of thresholds may define different classes of utilization. Communication by a second RAT over the resource may be adapted based on the classified utilization of the resource.