Abstract:
A system and method of locating a position of a wireless device in range of one or more base stations. Three signals are received that each contain a unique identifier for a base station. An estimate of the distance between the wireless device and each base station is performed. Previously determined locations for each base station are referenced. At least one of the three base stations is capable of communication to remote locations and unavailable to the wireless device for communication to remote locations.
Abstract:
A system and method for providing a multimodal list of transceiver devices to a remote terminal is disclosed. A positioning unit determines a location of a remote terminal. A processor identifies transceivers for communicating in at least a first communication mode and a second communication mode according to the location of the remote terminal. The processor retrieves information about the identified transceivers from a database and generates a multimodal list. The processor causes a transceiver to transmit the multimodal list of transceiver devices to the remote terminal using a communication mode of the remote terminal.
Abstract:
The subject matter disclosed herein relates to a system and method for acquiring signal received from satellite vehicles (SVs) in a satellite navigation system. In one example, although claimed subject matter is not so limited, information processed in acquiring a signal from a first SV may be used in acquiring a signal from a second SV.
Abstract:
Aspects of the invention are related to a method for synchronizing a first sensor clock of a first sensor. The exemplary method comprises: correcting the first sensor clock for a first time, transferring data from the first sensor, and correcting the first sensor clock for a second time, wherein a time interval between two corrections of the first sensor clock is selected such that the first sensor clock is sufficiently aligned with a processor clock of a processor over the time interval.
Abstract:
Techniques for display rotation are disclosed. In one aspect, raw angular motion sensor (AMS) data can be accessed. A motion state of the mobile device can be determined based at least in part on processing the raw AMS data. AMS data can be further processed to determine whether to perform a rotation of the display image based at least in part on applying at least one pre-defined criterion to the AMS data.
Abstract:
A method and system for assisting mobile stations to locate a satellite use an efficient messaging format. A server computes a correction between coarse orbit data of a satellite and precise orbit data of the satellite. A coordinate system is chosen such that variation of the correction is substantially smooth over time. The server further approximates the correction with mathematical functions to reduce the number of bits necessary for transmission to a mobile station. The mobile station, upon receiving the coefficients, evaluates the mathematical functions using the coefficients and a time of applicability (e.g., the current time), converts the evaluated result to a standard coordinate system, and applies the conversion result to the coarse orbit data to obtain the precise orbit data.
Abstract:
A method and system for assisting mobile stations to locate a satellite use an efficient messaging format. A server computes a correction between coarse orbit data of a satellite and precise orbit data of the satellite. A coordinate system is chosen such that variation of the correction is substantially smooth over time. The server further approximates the correction with mathematical functions to reduce the number of bits necessary for transmission to a mobile station. The mobile station, upon receiving the coefficients, evaluates the mathematical functions using the coefficients and a time of applicability (e.g., the current time), converts the evaluated result to a standard coordinate system, and applies the conversion result to the coarse orbit data to obtain the precise orbit data.
Abstract:
Various arrangements for handling a call by a mobile device and/or selecting a function for execution by the mobile device are presented. A phone call may be commenced by a mobile device. During the phone call, the mobile device may collect proximity data that indicates the mobile device is not proximate to an ear of a user. The microphone of the mobile device may be muted in response to the proximity data that indicates the mobile device is not proximate to the ear of the user.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for music playback control with gesture detection using proximity or light sensors using, at least in part, output or measurement signals from one or more ambient environment sensors, such as, for example, a proximity sensor or ambient light sensor.