Abstract:
The printing device is ink jet, parallel or serial-parallel type and comprises a plurality of ejection modules each of which with ejection chambers suitable for containing ink and with associated relative heating elements for ink ejection control. The device includes a support and a nozzle plate common to the modules, and in which the support includes a base plate of rigid material that defines through its thickness a feeding duct for the ink which, in use, is substantially parallel to the line of printing (X axis) and the ejection modules are fixed side by side on the base plate and with the ejection chambers arranged in a line in the same direction (X axis), is a hydraulic, tight connection with the feeding duct. The nozzle plate is fixed on the ejection modules constituting an upper, hydraulically tight, closing surface, for the chambers and comprises a plurality of ejection nozzles in a line, in turn in hydraulic connection with corresponding cells of the modules.
Abstract:
A thermal ink jet printhead (40) for the emission of droplets of ink on a print medium (46) comprises a reservoir (103) containing ink (142), a die (61), a slot (102) engraved in said die (61) and a plurality of ejectors (73), each of which in turn comprises a chamber (74), a resistor (27) and a nozzle (56), each of said chambers (74) being put in fluid communication with said slot (102) through a plurality of elementary ducts (72) lying on a different plane from the bottom (67) of said chamber (74).
Abstract:
On a die that has etchings on a surface, firstly a sheet of negative photoresist is laid down which, by means of an exposure and subsequent development, is left only above the etchings; then, upon the negative photoresist, a positive photoresist is applied, which is subjected to exposure and development to produce functional geometries deposited in thin film; subsequently the positive photoresist is removed in a “lift-off” operation, and the negative photoresist is taken off in a plasma operation, thus revealing the etchings.
Abstract:
An actuating assembly (50) for ink jet printheads consists of a silicon die (61), which comprises a groove (45) and a lamina (64), and of a structure (75) produced monolithically in the same production process. The actuating assembly (50) comprises a microhydraulics (63), the latter in turn comprising a plurality of channels (67) and chambers (57), made inside the structure (75) by means of a sacrificial metallic layer (54). A conducting layer (26) forms a single interconnected equipotential network used as the electrode during the processes of electrochemical etch stopping on the groove (45), of electrodeposition of the sacrificial layer (54) and of the latter's subsequent removal.
Abstract:
Process for protectively coating against aggressive liquids hydraulic microcircuits made in a resin (32), particularly for an ink jet printhead, consisting of: a9 disposing of a silicon substrate (20) comprising a sacrificial layer (26) of copper, deposited on the substrate and defining the inner shape of the hydraulic microcircuits (35, 36, 37); b) depositing on top of the outer surface of the sacrificial layer (26), by means of an electrochemical process, at least one protective, metallic coating layer (30); c) applying on the sacrificial layer (26) a non-photosensitive epoxy or polyamide resin (32), having a predetermined thickness and suitable for completely covering the sacrificial layer (26); d) effecting a polymerization of the resin (32) to increase its mechanical resistance to mechanical and thermal stresses and performing a planarization of the outer surface (33) of the resin (32), by means of a mechanical lapping and simultaneous chemical treatment; e) removing the sacrificial layer (26) through a chemical etching, in a highly acid bath; f) depositing a metallic, protective layer (39) on the outer surface (33) of the resin (32), through vacuum evaporation.
Abstract:
The chambers (42) and each corresponding ink feeding duct (56), made in a structural layer of photosensitive resin (38), are delimited by a flat bottom wall (36) made of a protective layer (34, 36) of tantalum and gold and an upper wall (44), consisting of a substantially concave surface, including at least one ejection nozzle (46) and joined to the bottom wall along a continuous perimetral line (52), in which the inner shape of each of the chambers (42) and of each of the feeding ducts (56) represents the complementary impression of the outer form of a sacrificial layer (57), obtained from a controlled and non-contained growth of a metal, deposited starting from the dimensions of the layer of gold (36), laid on top of the layer of tantalum (34).
Abstract:
This invention relates to a printhead in which a plurality of resistors are selectively activated by an external control circuit to produce the ejection of droplets of ink through nozzles located in correspondence with the resistors. Selection and activation are performed according to a matrix having a plurality of vertical lines corresponding to the number of resistors per group of nozzles and a plurality of horizontal lines corresponding to the number of groups of nozzles in the head. The groups of nozzles in the polychromatic head comprise real nozzles and fictitious nozzles, as a result of which the groups of nozzles have a regular layout, and are uniformly distributed and equivalent to the corresponding layout of a monochromatic head. With this solution, polychromatic heads having the same number and the same disposition of contacts with the external circuit and the same height as a monochromatic head can be manufactured simply.
Abstract:
A thermal ink jet printhead (40) for the emission of drops of ink on a print medium (46) comprises a tank (103) containing ink (142), a lamina (67), a groove (45) and a plurality of ejectors (73), each of which comprises in turn a chamber (74) placed laterally with respect to the groove (45), and fluidly connected thereto by means of a plurality of elementary ducts (75) produced on said lamina (67).
Abstract:
This invention relates to an integrated printhead (20) for ink jet printers, wherein the addressing of the various nozzles is effected in at least 3-D mode. The head (20) comprises a plurality of groups (24) of ink jet elements (21, 22) arranged in M rows and L columns wherein, in particular, the selection and activation of the different columns L are performed, under the control of an external drive circuit, by means of logic circuits (25) inside the head itself (20). The head (20) is advantageous with respect to the known art in that it does not require control of the L columns under critical conditions such as highly variable electric currents with very high peak values.
Abstract:
An actuator assembly (81) for ink jet printheads, both monochromatic and colour, with a large number of nozzles (62), consists of a die (58) stuck on a rigid substrate (166) and divided into two parts lengthwise to permit the flow of ink from the tank to the nozzles (62), and a flat cable (130) with nozzles (62) stuck on the die (58); the actuator assembly (81) is produced by means of the operations of sticking the die (58) on the rigid substrate (166), making a through cut (173) along the entire length of the die (58), sticking the flat cable (130) with nozzles (62) on the die (58) and sealing the ends of the longitudinal cut (173) with glue. The object of the actuator assembly (81) and the relative manufacturing process is to prevent particularly long dice from breaking during manufacture of the head.