Abstract:
Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics.
Abstract:
Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics.
Abstract:
Instrumentation for preparation of a bone includes a first guide having a first collet and a second collet. The first and second collets are formed around divergent first and second axes, and share a common opening. A bone preparation instrument may be inserted into each of the collets toward a bone. A second guide may be carried in the first guide, and a bone preparation instrument inserted through the second guide toward the bone, along a third axis.
Abstract:
Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics.
Abstract:
Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured posterolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics.
Abstract:
A trial system for an implantable joint replacement includes an articular insert having an insert body and an insert post captive to the insert body. The insert post is translatable relative to the insert body while remaining captive to the insert body. An aperture on the insert body forms a path, which may be arcuate, along which the insert post can translate. An axis of rotation about which the insert post translates passes through the insert body, and may be medially offset from the center of the body. A flexible element may connect the insert post to the insert body. In one method of use, the trial system is engaged with a femoral component and a tibial component during a prosthetic total knee joint implantation procedure to determine selection of an implantable articular insert which provides knee joint articulation closely matching the articulation of a natural knee.
Abstract:
Knee prostheses featuring components that more faithfully replicate the structure and function of the human knee joint in order to provide, among other benefits: greater flexion of the knee in a more natural way by promoting or at least accommodating internal tibial rotation in a controlled way, replication of the natural screw home mechanism, and controlled articulation of the tibia and femur respective to each other in a more natural way. In a preferred embodiment, such prostheses include an insert component disposed between a femoral component and a tibial component, the insert component preferably featuring among other things a reversely contoured postereolateral bearing surface that helps impart internal rotation to the tibia as the knee flexes. Other surfaces can also be specially shaped to achieve similar results, preferably using iterative automated techniques that allow testing and iterative design taking into account a manageable set of major forces acting on the knee during normal functioning, together with information that is known about natural knee joint kinetics and kinematics.
Abstract:
Manual razors consist of a handle and one or more cutting blades. The blades are usually contained in the head of the razor with an adjacent blunt metal or plastic leading edge which smoothes and flattens the skin. The present invention includes a separate device attached to the razor handle, which contacts and applies tension to the skin in order for the razor blades to cut more effectively. The tensioner device may be attached directly to the handle or with a modular attachmen, which allows interchangability of different handles.
Abstract:
The invention relates to a circuit arrangement for controlling electric motors of an industrial truck, comprising an electronic control stage with a main board (16) and an exchangeable board (22), and comprising a power-output stage (14). The exchangeable board (22) can be detached with little effort from the main board (16) that is fixed inside a case (12). The exchangeable board (22) comprises a group of selected control stage components (24) for which, statistically, a greater need for exchanging and/or a greater need for testing and/or a greater need for variants to be kept ready on the side of the producer exists than for the components (18) of the main board (16).
Abstract:
An apparatus and method are provided for forming an epitaxial layer on and denuded zone in a semiconductor wafer used in manufacturing electronic components. The denuded zone and epitaxial layer are formed in one apparatus. The apparatus includes a Bernoulli wand that is used to support the wafer in a cooling position to effect fast cooling of the wafer and formation of the denuded zone.