Abstract:
Various methods of control-less data transmission for NB-IoT/NR devices have been proposed to improve efficiency and system capacity in cellular networks. In a first embodiment, a PDCCH-less operation is performed between eNB and UE. UE will blindly decode some PDSCH subframes according to the parameters configured by higher layer. In a second embodiment, a PDCCH-lite operation is performed between eNB and UE. UE may use one PDCCH to schedule more than one subsequent PDSCH resources. In a third embodiment, an extremely compact DCI (E-DCI) format is used between eNB and UE. When the same assignment parameters are used by the eNB for the UE, DCI overhead may be reduced by E-DCI. In a fourth embodiment, direct data transmission in PDCCH is performed between eNB and UE. Data transmission is directly transmitted by PDCCH with a new DCI format.
Abstract:
Disclosed herein are various embodiments of methods to avoid abnormal transmit power control (TPC) behaviors occurring in a telecommunications system. Disclosed embodiments reduces the probability of misjudging an early termination indicator to avoid a telecommunications device from deriving improper TPC commands or alleviates the influence caused by improperly power control when a telecommunications device derives improper TPC commands.
Abstract:
Embodiments of the invention provide telecommunications methods that facilitate sharing of spreading codes. According to one of the embodiments, a first telecommunications apparatus first selects a plurality of second telecommunications apparatuses to share at least one spreading code. Then, the first telecommunications apparatus uses each of the at least one spreading code to perform spreading operations for the second telecommunications apparatuses by turns repetitively.
Abstract:
An embodiment of the invention provides a telecommunications method performed by a first telecommunications device while communicating with a second telecommunications device. According to the embodiment, the first telecommunications device generates a physical bits block based on an encoded bits block, wherein the physical bits block fits an available physical bits number. Then, the first telecommunications device maps the physical bits block onto a physical channel. Next, the first telecommunications device either performs or not performs early termination for the physical bits block.
Abstract:
An embodiment of the invention provides a telecommunications method to be performed by a first telecommunications device while trying to transmit a data block to a second telecommunications device. According to the embodiment, the first telecommunications device determines whether a first set of early termination criteria is satisfied. Then, if the first set of early termination criteria is satisfied, the first telecommunications device further determines whether a second set of early termination criteria is satisfied. The second set of early termination criteria is different from the first set of early termination criteria. If both the first set of early termination criteria and the second set of early termination criteria are satisfied before the first telecommunications device finishes transmitting the data block, the first telecommunications device reduces a transmission power.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE attempts to detect a trigger event. The UE determines values of a first set of power configuration parameters when the trigger event is detected. The UE transmits or receives signals in accordance with the values of the first set of power configuration parameters.
Abstract:
Techniques and examples of flexible signaling of capability of use equipment (UE) processing time in wireless communications are described. Accordingly, a UE establishes wireless communication with a network node of a wireless network. The UE also determines whether the UE is capable of operating in a second mode in addition to a first mode. The UE then transmits to the network node a report indicating capability of the UE to operate in the second mode and a condition with respect to a throughput associated with operating in the second mode. The UE performs a task in less time in the second mode than in the first mode.
Abstract:
Apparatus and methods are provided for RE allocation for UCI on PUSCH. In one novel aspect, the UE encodes UCI for transmission on PUSCH in a NR network. The UE allocates UCI REs onto the PUSCH following one or more UCI RE allocation rules including (a) using same logical allocation patterns for both CP-OFDM waveforms and DFT-S-OFDM waveforms, (b) distributing the UCI REs across a time domain of the PUSCH, and (c) distributing the UCI REs across a frequency domain for CP-OFDM or across a virtual-time domain for DFT-S-OFDM. In one embodiment, the HARQ-ACK REs are distributed across the time domain as much as possible. In another embodiment, the allocation of the HARQ-ACK REs further involves calculating the number of HARQ REs dynamically for the HARQ ACK. The number of HARQ REs is based on a weighting parameter, which is either configured or obtained through system information.
Abstract:
Techniques and examples of reservation of hybrid automatic repeat request (HARQ) acknowledgment (HARQ-ACK) resources in UCI in wireless communications are described. Accordingly, a UE determines how a HARQ-ACK is to be transmitted to a network node of a wireless network. The UE reserves HARQ-ACK resources among a plurality of resource elements (REs) for a two-bit HARQ-ACK based on a result of the determining. The UE then transmits the HARQ-ACK, having zero bit, one bit or two bits, to the network node in a physical uplink shared channel (PUSCH) using the reserved HARQ-ACK resources such that the PUSCH is punctured for the HARQ-ACK.
Abstract:
A method of wireless communication of a UE is provided. The UE receives downlink control information (DCI) in a downlink control channel (DCCH), the DCI indicating a first uplink (UL) channel. The UE determines a second UL channel that has been scheduled prior to receiving the DCI. The UE determines that the first UL channel overlaps with the second UL channel in a time domain. The UE determines whether an earliest symbol period from the first UL channel and the second UL channel is within a predetermined time period from a last symbol period of the DCCH. The UE determines that an unexpected event has occurred or transmits one of the first UL channel and the second UL channel, when the earliest symbol period is within the predetermined time period.