Abstract:
A multi-secured RFID (Radio Frequency Identification) electronic seal includes a bolt, a bolt pedestal and a RFID system. The bolt has a male bolt portion with an electrical connecting point. The bolt pedestal has a female pedestal portion with several nodes to electrically connect with the electrical connecting point to provide plural selections of connecting and disconnecting. The RFID system includes a RFID chip and a transmission conductor embedded in the bolt, and an antenna installed on the bolt pedestal. When the bolt and the bolt pedestal is securely locked together, whether the RFID chip is electrically connects to the antenna depends on if the electrical connecting point connects a preset node, so that a RFID signal may be selectively transmitted by the RFID chip through the antenna.
Abstract:
An electronic seal includes a radio frequency identification apparatus, an antenna assembly and an impedance matching circuit. The radio frequency identification apparatus includes at least two radio frequency identification units each for providing a specific code for identification. The antenna assembly is electrically connected to the radio frequency identification units. The antenna assembly is used to receive an electromagnetic signal for identification to excite the radio frequency identification units to transmit the specific codes through the antenna assembly. The impedance matching circuit is provided between the radio frequency identification units and the antenna assembly for adjusting the impedance matching of the radio frequency identification units to the antenna assembly, thus adjusting excitation powers and feedback powers of the specific codes from the radio frequency identification units through the antenna assembly.
Abstract:
An apparatus includes a processing chamber having a plasma containing region, a dielectric plate secured on top of the processing chamber, a power source separated from the plasma containing region by the dielectric plate, and a chuck supported within the processing chamber. The chuck is operable and configured to move with respect to the power source.
Abstract:
A kind of organic compound and organic dye used in dye-sensitized solar cell thereof. In the present invention, we synthesize a series of novel organic compounds with the structure of donor-conjugated chain-acceptor (D-π-A). The electron donor and acceptor groups, for example, are arylamine and cyanoacrylic acid, respectively. These novel organic compounds can be applied to the material of dye layer in the dye-sensitized solar cell (DSSC).
Abstract:
A method according to one embodiment may include providing power to at least one light source. The method of this embodiment may also include detecting the frequency of at least one vertical synchronization signal, among a plurality of different synchronization signals, and controlling the power to at least one light source based on, at least in part, the detected frequency of at least one vertical synchronization signal. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
A chip package structure is provided. The chip package structure comprises a first substrate, a second substrate and a plurality of chips. Therein, one of the chips is connected to the first substrate and electrically connected to the first substrate through a via hole of the first substrate. Thereby, the second substrate does not need the via hole for electrical connection of chips and thus, the surface thereof is adapted to remain intact to allow for the disposition of conductive balls throughout the surface.
Abstract:
A sequential burst mode regulation system to deliver power to a plurality of loads. In the exemplary embodiments, the system of the present invention generates a plurality of phased pulse width modulated signals from a single pulse width modulated signal, where each of the phased signals regulates power to a respective load. Exemplary circuitry includes a PWM signal generator, and a phase delay array that receives a PWM signal and generates a plurality of phased PWM signals which are used to regulate power to respective loads. A frequency selector circuit can be provided that sets the frequency of the PWM signal using a fixed or variable frequency reference signal.
Abstract:
A sequential burst mode regulation system to deliver power to a plurality of loads. In the exemplary embodiments, the system of the present invention generates a plurality of phased pulse width modulated signals from a single pulse width modulated signal, where each of the phased signals regulates power to a respective load. Exemplary circuitry includes a PWM signal generator, and a phase delay array that receives a PWM signal and generates a plurality of phased PWM signals which are used to regulate power to respective loads. A frequency selector circuit can be provided that sets the frequency of the PWM signal using a fixed or variable frequency reference signal.
Abstract:
A sequential burst mode regulation system to deliver power to a plurality of loads. In the exemplary embodiments, the system of the present invention generates a plurality of phased pulse width modulated signals from a single pulse width modulated signal, where each of the phased signals regulates power to a respective load. Exemplary circuitry includes a PWM signal generator, and a phase delay array that receives a PWM signal and generates a plurality of phased PWM signals which are used to regulate power to respective loads. A frequency selector circuit can be provided that sets the frequency of the PWM signal using a fixed or variable frequency reference signal.