Abstract:
Embodiments of the present invention provide a method for feeding back channel state information, a user equipment, and a base station, to improve feedback precision of channel state information. The method includes: receiving a reference signal sent by a base station; selecting a precoding matrix W from a codebook according to the reference signal, where a column vector of the precoding matrix W may be expressed as α[v ejφv]T, v=[1 ejθ]; and sending a precoding matrix indicator PMI to the base station, where the PMI is corresponding to the selected precoding matrix W. The present invention may further improve quantization precision and achieve balance between overheads and the quantization precision. The base station performs precoding on a sent signal according to a fed back precoding matrix indicator, which can improve precoding precision, thereby improving a data transmission rate and system throughput.
Abstract:
The present invention provides a precoding matrix indicator feedback method, a receive end, and a transmit end. The method includes: selecting, by a receive end based on a reference signal, a precoding matrix W from a codebook, where a coefficient α is used to perform phase adjustment on φn in W, φn represents a phase difference between weighted values of a first antenna group and a second antenna group of a transmit end for a transmission signal from a same transmission layer, φ n ∈ { ⅇ j2π n Q } , and the first antenna group and the second antenna group belong to a same multi-antenna system; and sending, by the receive end, a precoding matrix indicator (PMI) to the transmit end. In this way, using the coefficient α to perform the phase adjustment on φn can increase a size of a codebook set applicable to different antenna configurations, and improve precision of the receive end to feed back a PMI.
Abstract:
Embodiments of the present invention provide a method for feeding back a channel quality indicator, and a method and an apparatus for sending resource scheduling information. An apparatus for feeding back a channel quality indicator includes: a determining module, configured to determine a feedback granularity of a CQI according to a system bandwidth, a CQI feedback mode, and antenna port quantity information specified by a network device; and a feedback module, configured to feed back the CQI to the network device according to the feedback granularity of the CQI. The method for feeding back a channel quality indicator, and the method and the apparatus for sending resource scheduling information provided in the embodiments of the present invention are used to reduce system overheads.
Abstract:
Embodiments of the present invention provide a method for feeding back channel state information, a user equipment, and a base station, to improve feedback precision of channel state information. The method includes: receiving a reference signal sent by a base station; selecting a precoding matrix W from a codebook according to the reference signal, where a column vector of the precoding matrix W may be expressed as α[v ejφv]T, v=[1 ejθ]; and sending a precoding matrix indicator PMI to the base station, where the PMI is corresponding to the selected precoding matrix W. The present invention may further improve quantization precision and achieve balance between overheads and the quantization precision. The base station performs precoding on a sent signal according to a fed back precoding matrix indicator, which can improve precoding precision, thereby improving a data transmission rate and system throughput.
Abstract:
The present invention provides a precoding matrix indicator feedback method, a receive end, and a transmit end. The method includes: selecting, by a receive end based on a reference signal, a precoding matrix W from a codebook, where a coefficient α is used to perform phase adjustment on φn in W, φn represents a phase difference between weighted values of a first antenna group and a second antenna group of a transmit end for a transmission signal from a same transmission layer, φ n ∈ { ⅇ j 2 π n Q } , and the first antenna group and the second antenna group belong to a same multi-antenna system; and sending, by the receive end, a precoding matrix indicator (PMI) to the transmit end. In this way, using the coefficient α to perform the phase adjustment on φn can increase a size of a codebook set applicable to different antenna configurations, and improve precision of the receive end to feed back a PMI.
Abstract:
Embodiments of the present invention disclose a reference signal transmission method, including: sending, by a terminal, a first reference signal and a second reference signal; and correspondingly, receiving, by a network device, the first reference signal and the second reference signal, where the first reference signal is mapped to a plurality of symbols and is used for estimation of channel state information, the second reference signal is mapped to at least two of the plurality of symbols and is used for phase tracking, and a subcarrier to which the second reference signal is mapped on one of the at least two symbols has a same frequency-domain location as a subcarrier to which the second reference signal is mapped on the rest of the at least two symbols. With the foregoing solution, accuracy of channel state information estimation can be improved.
Abstract:
This application provides an example communication method and an example apparatus. The method includes a first network device generates first indication information to indicate a first downlink resource. Second indication information indicates a second downlink resource. Because the first indication information may indicate whether the second indication information exists, if a terminal device detects the first indication information in the first time unit, and the first indication information indicates that the second indication information does not exist in the first time unit, the terminal device may stop a blind detection process on the second indication information in advance.
Abstract:
A base station, user equipment, and communication signal transmitting and receiving methods. A communication signal transmitting apparatus includes a transmitter; a processor, and non-transitory computer-readable storage medium storing a program for execution by the processor, the program including instructions to determine at least two different resource element groups to use to transmit a synchronization signal, each different resource element group of the at least two different resource element groups used to separately transmit the synchronization signal, and transmit the synchronization signal to user equipment on each of the resource element groups, where, for each resource element group, the synchronization signal transmitted on the respective resource element group carries at least one piece of same information, the same information is cell specific information, and the synchronization signals transmitted on the at least two resource element groups using different beams.
Abstract:
A data transmission method includes determining, by a base station, a first phase noise compensation reference signal (PCRS) port set and a second PCRS port set in a first scheduling period, where the first PCRS port set includes at least one port used to transmit a PCRS, but the second PCRS port set does not include a port used to transmit a PCRS in the first scheduling period; determining, by the base station, a first time-frequency resource element corresponding to the at least one port used to transmit a PCRS in the first PCRS port set; if a quantity of first time-frequency resource elements is greater than or equal to 1, sending, by the base station, a PCRS to user equipment on the first time-frequency resource element; and sending, by the base station, data to the user equipment on a second time-frequency resource element corresponding to the second PCRS port set.
Abstract:
A data transmission method, a transmitting device, and a receiving device are disclosed. The method is applicable to a wireless communications system including a plurality of beams, and includes: determining, by a transmitting device, beam indication information and at least one transmit beam used for sending data to a receiving device; sending, by the transmitting device, the beam indication information to the receiving device; and transmitting, by the transmitting device, the data by using the at least one transmit beam. The transmitting device sends the beam indication information to indicate, to the receiving device, a corresponding receive beam used for receiving the data transmitted by the transmitting device.