Abstract:
Filter devices for use in power conversion systems utilizing silicon carbide MOSFETs are provided. A power conversion system can include a power converter configured to convert power from a first power to a second power. The second power can have at least one different characteristic from the first power. The power converter can include one or more silicon carbide MOSFET. The power conversion system can further include a filter device configured to filter at least a portion of one or more switching harmonics from power converted by the power converter.
Abstract:
Systems and methods for controlling operation of a power converter based on grid conditions are provided. In particular, a first gating voltage can be applied to a switching element of a power converter associated with a wind-driven power generation system. The first gating voltage can be greater than a threshold voltage for the switching element. A grid event associated with an electrical grid coupled to the power generation system can be detected. A second gating voltage can be applied to the gate of the switching element during the detected grid event. The second gating voltage can be greater than the first gating voltage.
Abstract:
Systems and methods associated with example power converter systems are disclosed. For instance, a power converter system can include a power converter couplable to an input power source and configured to generate an output power substantially at a grid frequency. The power converter can include one or more inverter bridge circuits, each associated with an output phase of the power converter. Each inverter bridge circuit can include one or more first switching modules having a pair of switching elements coupled in series with one another, and an output coupled between the pair of switching elements. At least one switching element of each first switching module includes a reverse blocking transistor. The power converter further includes one or more input bridge circuits having a plurality of second switching modules coupled in parallel, each second switching module comprising a pair of silicon carbide transistors.
Abstract:
A method for detecting a grid event is provided. The method includes sampling grid voltage and grid current over a fixed period of time; determining grid impedance at one or more frequencies using the sampled grid voltage and the sampled grid current; comparing the grid impedance at the one or more frequencies to a known expected grid impedance at the one or more frequencies; and detecting a grid event based on the comparison.
Abstract:
In one aspect, a method for controlling the operation of switching elements contained within a single-phase bridge circuit of a power convertor may include monitoring gate voltages of a first switching element and a second switching element of the single-phase bridge circuit and controlling the first and second switching elements so that each switching element is alternated between an activated state and a deactivated state. In addition, the method may include transmitting a gating command signal to adjust the first switching element from the deactivated state to the activated state when: a first gate drive command is received that is associated with switching the first switching element to the activated state; a second gate drive command is received that is associated with switching the second switching element to the deactivated state; and the gate voltage of the second switching element is less than a predetermined voltage threshold.
Abstract:
Systems and methods for converting power are presented. The power conversion includes conducting load current through a first current path of multiple current paths in a power conversion unit using switches, diodes, or a combination thereof. The power conversion also includes blocking one or more additional current paths of the multiple current paths in the power conversion unit using one or more of the switches, one or more of the diodes, or a combination thereof. Furthermore, the power conversion includes reducing potential voltage stress on the one or more switches by using one or more voltage stress reduction switches to reduce a voltage that is blocked by the one or more blocking switches or diodes by connecting an end of each of the one or more switches opposite to a blocking edge to an intermediate voltage node.
Abstract:
A system for operating a power generation system within a battery storage/discharge mode includes a power convertor having a DC link, a switching module coupled to the DC link, a storage device, and a filter coupled between the storage device and power converter. The filter may correspond to a normal mode filter configured to limit normal mode voltage from being applied to the storage device. A common mode filter may be associated with the storage device. The storage device may correspond to one or more batteries while the power generation system may correspond to a wind-driven generator.
Abstract:
High performance gate drives and methods for driving semiconductor switching elements, such as insulated gate bipolar transistors (IGBTs), are provided. The gate drive can control the voltage applied to the gate of the IGBT to one or more intermediate voltages near the threshold voltage of the IGBT to control dv/dt of the collector-emitter voltage during and the di/dt of the collector current turn off. For instance, a voltage level between the turn on voltage and the turn off voltage can be applied for a first time period to control dv/dt of the collector-emitter voltage and di/dt of the collector current during turn off. Another voltage level between the turn on voltage and the turn off voltage can be applied for a second time period during reverse recovery of a freewheeling diode coupled in parallel with the IGBT.
Abstract:
Wind turbine systems and methods for operating wind turbine systems are provided. In one embodiment, a method includes gating on a dynamic brake switch of a dynamic brake in a wind turbine power converter when an experienced direct current (DC) bus voltage is equal to or greater than a threshold DC bus voltage. The method further includes disabling a threshold temperature rating for the dynamic brake switch when the dynamic brake switch is gated on, and gating off the dynamic brake switch when the experienced DC bus voltage is less than the threshold DC bus voltage.
Abstract:
A method for detecting a grid event is provided. The method includes sampling grid voltage and grid current over a fixed period of time; determining grid impedance at one or more frequencies using the sampled grid voltage and the sampled grid current; comparing the grid impedance at the one or more frequencies to a known expected grid impedance at the one or more frequencies; and detecting a grid event based on the comparison.