Abstract:
A method for manufacturing a fuel contacting component that facilitates reducing coke formation on at least one surface of the fuel contacting component is disclosed herein. The method includes applying a slurry composition including a powder including aluminum to the component surface, wherein the fuel contacting component is formed by an additive manufacturing process. The slurry composition is heat treated to diffuse the aluminum into the component surface. The heat treatment comprises forming a diffusion aluminide coating on the component surface, wherein the diffusion coating comprises a diffusion sublayer formed on the component surface and an additive sublayer formed on the diffusion sublayer. The method further comprises removing the additive sublayer of the diffusion aluminide coating with at least one aqueous solution such that the diffusion sublayer and the component surface are substantially unaffected, wherein the diffusion layer facilitates preventing coke formation on component surface.
Abstract:
Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
Abstract:
A multi-step electrochemical stripping method includes providing a determined electrode potential between a reference electrode and an article submerged in an electrolyte; recording a current peak value of a current signal flowing through the article; removing the voltage provided to the article when the current signal falls to a determined first current value after passing the current peak value; refreshing the electrolyte; providing the determined electrode potential again for a determined time and determining whether the current signal is less than a determined second current value during the determined time, if not, goes back to the refreshing step; and if yes, the process ends.