Abstract:
Aspects of a method and system for registering femtocells to provide service are provided. In this regard, a communication device may be operable to determine a plurality of femtocells within a vicinity of its location. The communication device may be operable to receive information communicated from one or more of the plurality of femtocells, which are managed by a femtocell management entity. One or more of the plurality of femtocells may be selected for transmitting and/or receiving cellular data based on the communicated information. The communicated information may comprise one or more of global navigation system satellite (GNSS) coordinates, an identification number, potential interference, power levels, location, associated communication devices, and/or directionality of antennas of the one or more femtocells.
Abstract:
An access device receives content from a broadband IP network to be communicated to a wireless handset over a radio access network (RAN). The access device acquires a user profile utilized in the radio network for the wireless handset. Based on the acquired user profile, the access device determines transmission parameters utilized for communicating the received content to the wireless handset using an air interface protocol over the radio access network. A security level and/or a security protocol, a transcoding mechanism, and/or transmission bit rate are determined based on the acquired user profile. A resolution, transmission bit rate, coding structure, security protocol and/or security level for transmitting the received content to the wireless handset are adjusted based on the acquired user profile. Alternately, the access device is enabled to receive content from the wireless handset using a transmission profile determined based on user profile of the wireless handset.
Abstract:
A method and apparatus for providing assistance data for satellite positioning system receivers utilizing a secure user plane location (SUPL) service. In one embodiment, the assistance data is supplied by a global secure user plane location center that contains global assistance data.
Abstract:
A method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver is described. In one example, a first set of satellite tracking data is received at a server. Integrity data for a second set of satellite tracking data is generated using the first set of satellite tracking data. The integrity data is then transmitted to at least one remote receiver having the second set of satellite tracking data.
Abstract:
Aspects of a method and system for Doppler estimation may include generating, in a GNSS receiver operating in a duty-cycle mode, a plurality of lag-m products that may be based on a plurality of correlation coefficients corresponding to one or more received signals, wherein the plurality of correlation coefficients may be generated during an active period of the duty-cycle mode of operation. A Doppler frequency may be estimated based on the plurality of lag-m products. The GNSS receiver may be compliant with one or more standards comprising GALILEO, GLONASS, IRNSS, and BEIDOU. The active period of the duty-cycle mode may be chosen arbitrarily from a range of 1% to 99%.
Abstract:
A method and apparatus for generating and distributing satellite tracking data to a remote receiver is disclosed. The method for includes extracting from satellite-tracking data initial model parameters representing a current orbit of at least one satellite-positioning-system satellite, computing an orbit model using the initial model parameters, wherein a duration of the orbit model is longer than a duration of the satellite-tracking data, comparing, for an overlapping period of time, the orbit model to the satellite-tracking data; and adjusting the orbit model to match the satellite tracking data for the overlapping period of time so as to form an adjusted orbit model. The adjusted orbit model comprises the long-term-satellite-tracking data.
Abstract:
Method and apparatus for processing a satellite positioning system (SPS) signal is described. In one example, a timing reference related to a SPS time of day is obtained from a wireless communication signal received by a mobile receiver. A bias in a local clock of the mobile receiver with respect to a frame timing of a repeating code broadcast by the satellite is compensated for in response to the timing reference. An expected code delay window is obtained for the SPS signal at the mobile receiver. The SPS signal is correlated with a reference code within the expected code delay window. In another example, an expected code delay window is obtained at the mobile receiver. The mobile receiver selects a sampling resolution in response to a size of the expected code delay window. The SPS signal is sampled at the selected sampling resolution and then correlated with a reference code.
Abstract:
A method and apparatus for processing satellite positioning system signals at a mobile receiver is described. In one example, first bit-transitions within satellite navigation data transmitted by at least one satellite are estimated at the mobile receiver. A bit pattern is generated that includes a known preamble and an extended preamble. The extended preamble includes expected data bits within the satellite navigation data. The first bit-transitions are compared with second bit-transitions of the bit pattern to generate match data.
Abstract:
A method and apparatus for providing a digital automatic gain control (AGC) for a radio-frequency (RF) receiver. The receiver comprises a logarithmic analog-to-digital converter for sampling the analog RF signals, a FIR filter for filtering the digitized signals, a resampler for resampling the digitized signals, and an automatic gain control circuit. The AGC circuit controls the resampling process to provide automatic gain control function in the digital domain. The resampler circuit has as its input a digital signal having a first plurality of bits. The output signal from the resampler has a second plurality of bits, where the second plurality of bits are less than the first plurality of bits. The automatic gain control circuit controls the resampling of the first plurality of bits to form the second plurality of bits in accordance with an automatic gain control signal.
Abstract:
A method and apparatus for determining time-of-day in a mobile receiver is described. In one example, expected pseudoranges to a plurality of satellites are obtained. The expected pseudoranges are based on an initial position of the mobile receiver and an initial time-of-day. Expected line-of-sight data to said plurality of satellites is also obtained. Pseudoranges from said mobile receiver to said plurality of satellites are measured. Update data for the initial time-of-day is computed using a mathematical model relating the pseudoranges, the expected pseudoranges, and the expected line-of-sight data. The expected pseudoranges and the expected line-of-sight data may be obtained from acquisition assistance data transmitted to the mobile receiver by a server. Alternatively, the expected pseudoranges may be obtained from acquisition assistance data, and the expected line-of-sight data may be computed by the mobile receiver using stored satellite trajectory data, such as almanac data.