Abstract:
The switching frequency of a switch mode PFM power converter is compared with a predetermined frequency range that contains the operating frequency of a nearby clocked sub-system. In response to the switching frequency coming into the range, a parameter of the power converter is changed from an original value, so as to cause the switching frequency to go out of the range.
Abstract:
This application includes multiple embodiments related to capacitors. In some embodiments, capacitors are set forth as having terminal leads that extend in parallel and opposing axial directions. The embodiments discussed herein relate to a capacitor module including one or more anodized pellets for providing a charge storage within the capacitor module. The capacitor module can be configured as a surface mounted or non-surface mounted capacitor module. The capacitor module can include an array of anodized pellets arranged in multiple rows or columns of anodized pellets connected by conductive trace included in the capacitor module. In a non-surface mounted embodiment of the capacitor module, the capacitor module can include cathode and anode connections that are exclusively on the side surfaces of the capacitor module.
Abstract:
In some implementations, a mobile device can be configured with virtual motion fences that delineate domains of motion detectable by the mobile device. In some implementations, the mobile device can be configured to invoke an application or function when the mobile device enters or exits a motion domain (by crossing a motion fence). In some implementations, entering or exiting a motion domain can cause components of the mobile device to power on or off (or awaken or sleep) in an incremental manner.
Abstract:
The switching frequency of a switch mode PFM power converter is compared with a predetermined frequency range that contains the operating frequency of a nearby clocked sub-system. In response to the switching frequency coming into the range, a parameter of the power converter is changed from an original value, so as to cause the switching frequency to go out of the range.
Abstract:
An on-chip digital communication interface circuit is to be directly coupled to a counterpart interface circuit of a separate battery-side gas gauge circuit. An on-chip battery charging control circuit controls battery charging voltage and current that is supplied from a separate power source interface circuit to a battery cell terminal, according to charging voltage and current limits. The charging limits are read from the gas gauge circuit and in effect carry out a selected one of several different battery charging profiles. Other embodiments are also described and claimed.
Abstract:
A parameter related to the Earth's magnetic field can be used to determine accuracy of a magnetometer of a mobile device. In one aspect, a first instance of a parameter related to Earth's magnetic field is determined using data generated by the magnetometer. The magnetometer data can be based in part on a position of the mobile device with respect to the Earth. A second instance of the parameter can be determined using data generated by a model of Earth's magnetic field. The model data can also be based in part on the position of the mobile device with respect to the Earth. The first instance of the parameter can be compared with the second instance of the parameter. An accuracy metric for the magnetometer can be determined based on a result of the comparison. An indication of the accuracy metric can be presented by the mobile device.
Abstract:
A device to capture an image includes a camera oriented to capture a first image of a subject and a display oriented to display a second image that is viewable by the subject. A backlight is coupled to the display to provide light that passes through the display toward the subject. An image processor is coupled to the camera and the backlight to adjust an amount of light provided by the backlight responsive to a quality of the first image. The light provided by the backlight may illuminate the subject and thereby improve the quality of the first image. The image processor may further adjust the amount of light provided by the backlight responsive to an ambient light level sensed by an ambient light sensor. The image processor may further adjust the second image to adjust an amount of light that passes through the display.
Abstract:
A case for an electronic device can include a case body including an exterior surface and an interior surface, the interior surface being positioned opposite the exterior surface. The case can additionally include a button body positioned at least partially within the case body between the exterior surface and the interior surface, the button body being movable inward and outward relative to the case body along an axis of button travel. The case can further include a biasing structure having a contact surface configured to contact the button body, the biasing structure configured to bias the button body toward the interior surface along the axis of button travel.
Abstract:
An accessory strobe device for a mobile device may operate to provide illumination at the same time as an internal built-in strobe (flash) of the mobile device. The accessory strobe device may receive a single, unidirectional signal from the mobile device that provides signals related to the timing of the internal strobe. The accessory strobe device may process the received signal to control its illumination using the timing and relative intensity levels of the internal strobe during metering and main (normal) flash operations associated with a camera on the mobile device. With the accessory strobe device operating using timing and relative intensity levels in a predetermined relationship with the timing and relative intensity levels of the internal strobe, the accessory strobe device may be used to complement the internal strobe during the metering and main (normal) flash operations for the camera.
Abstract:
A wireless power system may include an accessory configured to transfer or relay wireless power to a portable electronic device. The portable electronic device may include wireless charging circuitry and sensors configured to detect compatible accessories currently coupled with the portable electronic device. The portable electronic device performs wireless charging or related functions in accordance with the coupled accessories.