Abstract:
Disclosed herein are methods and systems for providing haptic output on an electronic device. In some embodiments, the electronic device includes an actuator configured to move in a first direction. The electronic device also includes a substrate coupled to the actuator. When the actuator moves in the first direction, the substrate or a portion of the substrate, by virtue of being coupled to the actuator, moves in a second direction. In some implementations, the movement of the substrate is perpendicular to the movement of the actuator.
Abstract:
An electronic device having an optical connector that provides and/or receives optical signals through openings or perforations formed at an external surface of the electronic device. These openings can serve as the interface of the optical connector through which the electronic device can engage in one-way or two-way communication with corresponding optical connectors of other electronic devices. These openings can be sized such that they are not visible or not easily visible with the naked human eye. As such, these openings can be too small for communicating with corresponding optical connectors using any single one of these openings. But light that is collectively transmitted through or received through a group of these openings can provide optical signals that can be used to communicate with corresponding optical connectors using optical signals.
Abstract:
Structures and methods for providing a liquid adhesive between substrates of a composite structure are described. Methods include providing a liquid adhesive having a thread disposed therein between two substrates of a composite structure. In some embodiments, the thread has a fixed diameter which acts to provide a consistent gap between the two substrates. In some embodiments, the thread is configured to be activated during the assembly process to facilitate curing of the liquid adhesive. In some embodiments the thread is configured to be activated after the composite structure is formed to facilitate separation of the two substrates and disassembly of the composite structure. The thread can be made of a conductive or non-conductive material. In some embodiments, the thread is activated by passing a voltage through the thread to heat the thread. In some embodiments, the thread is activated by passing ultraviolet light through the thread.
Abstract:
Printed circuit substrates may be formed from rigid printed circuit material or flexible sheets of polymer. Printed circuit substrates may have conductive traces. Integrated circuits, touch sensor electrode structure, sensors, and other components may be mounted to the conductive traces. Connectors such as board-to-board connectors may be used to couple printed circuit substrates together. To hold the connectors together and to provide electromagnetic shielding, printed circuits and connectors may be surrounded by printed circuit connector securing structures. The printed circuit connector securing structures may have one or more strips of conductive fabric tape wrapped around the connectors. Metal stiffening members may be attached to opposing ends of the strip of conductive tape to facilitate removal of the tape for rework or repair. An additional strip of tape may be used to help secure the wrapped conductive tape. The additional strip may have a tab to facilitate removal.
Abstract:
A process is provided for characterizing a tactile response of a first mechanical actuator (e.g., button) based on a back off distance. The first mechanical actuator may include a plunger, a dome-shaped flexible membrane, and an electrical contact, all aligned with each other so that a contact signal is generated when the flexible membrane touches the contact. The plunger can be moved a first distance towards the contact until the contact signal is generated at a contact point. Then the plunger can be backed off a second distance from the contact point. This second distance may be called the “back off distance”. The particular feel of the first mechanical actuator can then be correlated to a particular back off distance. This process can be repeated a number of times to classify a number of different “feels” for the first mechanical actuator based on a number of different back off distances.
Abstract:
An electronic device may have a liquid crystal display with backlight structures. The backlight structures may produce backlight that passes through the display layers in the display. The display layers may include a layer of liquid crystal material interposed between a color filter layer and a thin-film transistor layer. The backlight structures may include a light guide plate. A plurality of light-emitting diodes mounted on a flexible printed circuit may be coupled to an edge of the light guide plate. The flexible printed circuit may be curled into a spring element to bias the light-emitting diodes against the edge of the light guide plate. A plurality of gaps may be formed in the flexible printed circuit and may be used to separate and mechanically decouple adjacent light-emitting diodes. Individual light-emitting diodes may independently register to the light guide plate to maximize optical efficiency in the display.
Abstract:
An improved electrical connector retainer employs a shell having a cavity. A pair of mated electrical connectors are received within the cavity and at least a portion of an upper wall of the shell is deflected towards a lower wall of the shell. The shell is configured to retain the upper wall in the deflected position, maintaining the pair of connectors in the mated position.
Abstract:
Pressure indicator pressure sensitive adhesive may contain microspheres that burst and release indicator when subjected to pressure and thereby produce a detectable indication of how much pressure has been applied when forming an adhesive joint between opposing structures. Electronic device structures can be assembled using the pressure indicator pressure sensitive adhesive. A camera or other sensor may monitor joint formation. The camera can gather infrared image data, visible light image data, or ultraviolet light image data. Sensor data such as magnetic or ultrasonic sensor data can also be collected on an adhesive joint. Joint inspection can be performed on test structures and production structures and corresponding adjustments made to the joint formation process. Positioners and other equipment that compresses the pressure indicator pressure sensitive adhesive can be adjusted in real time or calibrated using information about the condition of the pressure indicator pressure sensitive adhesive.
Abstract:
Printed circuit substrates may be formed from rigid printed circuit material or flexible sheets of polymer. Printed circuit substrates may have conductive traces. Integrated circuits, touch sensor electrode structure, sensors, and other components may be mounted to the conductive traces. Connectors such as board-to-board connectors may be used to couple printed circuit substrates together. To hold the connectors together and to provide electromagnetic shielding, printed circuits and connectors may be surrounded by printed circuit connector securing structures. The printed circuit connector securing structures may have one or more strips of conductive fabric tape wrapped around the connectors. Metal stiffening members may be attached to opposing ends of the strip of conductive tape to facilitate removal of the tape for rework or repair. An additional strip of tape may be used to help secure the wrapped conductive tape. The additional strip of tapc may have a tab to facilitate removal.
Abstract:
Methods and tools for positioning cables using magnets during assembly of a consumer electronic product are described. Methods described are well suited in the manufacture of portable electronic devices such as mobile phones, computer tablets and the like. Methods involve attaching magnetic components to cables and to one or more surfaces within the enclosure of the electronic devices. During assembly, the magnetic components on the cables magnetically couple with corresponding magnetic components on the surfaces within the enclosure. In this way, the cables can be secured in certain positions and out of the way during the assembly of the electronic device. In some instances, the cables can remain magnetically secured after assembly and during the operation of the electronic device. In other instances, the magnetic components are decoupled after assembly thereby releasing the cables from their secured positions during operation of the electronic device.