Abstract:
The wireless earphone (1) comprises a housing (2) having a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet (5) at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver (6) is inside the bud portion. Electronic circuitry (7,24) inside the housing (2) includes a wireless communications interface (4) to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery (3) as a power source for the electronic circuitry is located inside a cavity of the stem portion.
Abstract:
Method of improving voice quality using a wireless headset with untethered earbuds starts by receiving first acoustic signal from first microphone included in first untethered earbud and receiving second acoustic signal from second microphone included in second untethered earbud. First inertial sensor output is received from first inertial sensor included in first earbud and second inertial sensor output is received from second inertial sensor included in second earbud. First earbud processes first noise/wind level captured by first microphone, first acoustic signal and first inertial sensor output and second earbud processes second noise/wind level captured by second microphone, second acoustic signal, and second inertial sensor output. First and second noise/wind levels and first and second inertial sensor outputs are communicated between the earbuds. First earbud transmits first acoustic signal and first inertial sensor output when first noise and wind level is lower than second noise/wind level. Other embodiments are described.
Abstract:
An audio system is provided that efficiently detects speaker arrays and configures the speaker arrays to output sound. In this system, a computing device may record the addresses and/or types of speaker arrays on a shared network while a camera captures video of a listening area, including the speaker arrays. The captured video may be analyzed to determine the location of the speaker arrays, one or more users, and/or the audio source in the listening area. While capturing the video, the speaker arrays may be driven to sequentially emit a series of test sounds into the listening area and a user may be prompted to select which speaker arrays in the captured video emitted each of the test sounds. Based on these inputs from the user, the computing device may determine an association between the speaker arrays on the shared network and the speaker arrays in the captured video.
Abstract:
Method of improving voice quality using a wireless headset with untethered earbuds starts by receiving first acoustic signal from first microphone included in first untethered earbud and receiving second acoustic signal from second microphone included in second untethered earbud. First inertial sensor output is received from first inertial sensor included in first earbud and second inertial sensor output is received from second inertial sensor included in second earbud. First earbud processes first noise/wind level captured by first microphone, first acoustic signal and first inertial sensor output and second earbud processes second noise/wind level captured by second microphone, second acoustic signal, and second inertial sensor output. First and second noise/wind levels and first and second inertial sensor outputs are communicated between the earbuds. First earbud transmits first acoustic signal and first inertial sensor output when first noise and wind level is lower than second noise/wind level. Other embodiments are described.
Abstract:
A headset that communicates with a mobile device through a local radio frequency (RF) communication link to conduct a telephone call is described. The headset includes a local RF communication modem that receives downlink packets from the mobile device through the local RF communication link. The downlink packets were received by the mobile device through a wireless communication link. The headset includes an audio decoder that decodes the downlink packets into a downlink audio signal to be played back at the headset. The headset also includes an audio encoder that encodes an uplink audio signal produced by the headset into uplink packets. The local RF communication modem sends the uplink packets to the mobile device through the local RF communication link. Other embodiments are also described and claimed.
Abstract:
Unwanted audio, such as explicit language, may be removed during audio playback. An audio player may identify and remove unwanted audio while playing an audio stream. Unwanted audio may be replaced with alternate audio, such as non-explicit lyrics, a “beep”, or silence. Metadata may be used to describe the location of unwanted audio within an audio stream to enable the removal or replacement of the unwanted audio with alternate audio. An audio player may switch between clean and explicit versions of a recording based on the locations described in the metadata. The metadata, as well as both the clean and explicit versions of the audio data, may be part of a single audio file, or the metadata may be separate from the audio data. Additionally, real-time recognition analysis may be used to identify unwanted audio during audio playback.
Abstract:
A mobile device uses externals microphone signals to improve the estimate of background noise that it computes. In order to improve voice quality in a first signal that is produced by an internal microphone, the mobile device identifies an external microphone device within proximity of the mobile device. The mobile device establishes a wireless connection with the external microphone device. The mobile device receives a second signal from the external microphone device through the wireless connection. The second signal is produced by a microphone of the external microphone device. The mobile device generates a noise profile based on the second signal, and then suppresses background/ambient noise from the first signal based on the noise profile. Other embodiments are also described.
Abstract:
A headset that communicates with a mobile device through a local radio frequency (RF) communication link to conduct a telephone call is described. The headset includes a local RF communication modem that receives downlink packets from the mobile device through the local RF communication link. The downlink packets were received by the mobile device through a wireless communication link. The headset includes an audio decoder that decodes the downlink packets into a downlink audio signal to be played back at the headset. The headset also includes an audio encoder that encodes an uplink audio signal produced by the headset into uplink packets. The local RF communication modem sends the uplink packets to the mobile device through the local RF communication link. Other embodiments are also described and claimed.