Abstract:
Techniques for automatically configuring and controlling a digital media device are described. A digital media device can be configured or controlled by a mobile device, e.g., a smart mobile phone. When the digital media device is being configured, the digital media device can broadcast a signal, indicating that the digital media device is requesting configuration information from a mobile device. A mobile device located in proximity of the digital media device, upon detecting the signal, can perform various security checks to determine that the request is legitimate, and then open a communication channel with the digital media device. The mobile device can provide user preferences of the mobile device, as well as credentials for accessing and downloading remote content, to the digital media device through the communication channel. Upon receiving the configuration information, the digital media device can use parameters in the configuration information as its settings.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A transport for data communication can be selected based on current data communication activity. A master device and a slave device can establish a control channel on one transport and one or more data channels. A master device can determine which transport should be used for the data channel(s) based on real-time status information about the data exchange and can coordinate with the slave device to switch the data channel(s) to a different transport when appropriate.
Abstract:
Systems, methods, and non-transitory computer-readable storage media for performing a role swapping operation between a pair of non-tethered wireless ear buds after detecting a triggering event. Further, state information can be coordinated between devices, including in connection with performing a role swap between buds in a pair of wireless, untethered ear buds, where one wireless ear bud is in a primary role and is responsible for a connection with a companion device, and another wireless ear bud in the pair is in a secondary role.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
An electronic device is described. During operation, this electronic device activates a communication channel having a carrier frequency in a radio in an interface circuit to listen for an advertising frame of interest from another electronic device during a scan window having a predefined duration. If the advertising frame of interest is received from the other electronic device, the electronic device terminates the listening before the predefined duration has expired and, using the communication channel in the radio, transmits the connect request to the other electronic device to establish the connection with the other electronic device. In this way, the delay between discovery of the other electronic device and establishing the connection is reduced. In addition, the power consumed by the electronic device while scanning for the other electronic device and initiating the connection is reduced.
Abstract:
Methods for operating portable electronic devices to maintain accurate timing information are provided. In one suitable arrangement, an electronic device may have a real-time clock and a mach-time clock that can be used separately to track the Coordinated Universal Time (UTC). The offset of the real-time clock and the mach-time clock from UTC can be monitored to determine if there is any oscillator frequency drift, which can be characterized using a linear model. Any variation in drift caused by environment factors such as temperature may also be characterized. In another suitable arrangement, a primary electronic device that is capable of maintaining accurate timing information may transfer that information to a secondary user device. Timing information may be transferred using mach-time values and may then be converted to real-time clock values to ensure that the secondary user device can estimate time accurately even when the device goes to sleep.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
Pairing a portable electronic device with a media device that is playing media, providing control to the portable device, displaying information about the media being played on the portable electronic device, and providing a link to the media asset in an online store. Discovering that a media device that is currently publically playing media, receiving a media signal encoded with metadata describing the media being played, and displaying an accrued history of various instances of media items that have been overheard during a public play session as a list of media items associated with metadata describing the media items.
Abstract:
Techniques for discovering and/or advertising services are described herein. A first bitmask is received from a remote device over a wireless network, the first bitmask having one or more bits that have a predetermined logical value. Each bit represents a particular service provided by the remote device. A logical operation is performed between the first bitmask and a second bitmask locally generated within a local device, where the second bitmask represents a service being searched by the local device. It is determined whether the remote device is potentially capable of providing the service being searched by the local device based on a result of the logical operation.