Abstract:
The present invention relates to a method for allocating subcarriers in an orthogonal frequency division multiplex (OFDM) system, and a transmitter thereof. In the OFDM system according to an exemplary embodiment of the present invention, the subcarrier allocation is performed in the buffer (10) before a modulation mapping operation is performed according to a modulation method such that the delay may not be generated in the subchannel formed on the symbol axis. The delay corresponding to the symbols is prevented without using any additional hardware for eliminating the delay generated when the subcarriers are allocated to the subchannel formed on the symbol axis.
Abstract:
The present invention provides a method for designing operation schedules of a fast Fourier transform (FFT) and a multiple input multiple output orthogonal frequency division multiplexing modem (MIMO-OFDM modem) thereof. According to the present invention, an operation speed of an FFT operator is set up, a receiving symbol is arranged in an OFDM symbol duration in an FFT after receiving the symbol, a transmitting symbol is arranged in an OFDM symbol duration in the FFT schedule before transmitting the symbol, a transmitting/receiving symbol which has the same timing is inserted into an idle symbol duration of the FFT schedule, an FFT schedule which is good to be deleted is deleted, and symbols of the deleted FFT schedule are re-arranged in order to not have an error occur in transmitting/receiving timing.
Abstract:
A cell search device using an appropriate preamble for a downlink of a cellular system using an orthogonal frequency division multiplexing access (OFDMA) scheme and a method thereof is disclosed. The cell search device for a terminal of a cellular system using an orthogonal frequency division multiplexing access scheme includes when the terminal receives a preamble symbol from a base station, a PN code and phase delay estimating unit for generating a code with the received preamble symbol and a combination of a PN code and a Walsh code, calculating a correlation value therebetween using a differential demodulation for the codes to detect the PN code, a plurality of Walsh codes, and an error of a time delay, and estimating a component of a phase delay for the time delay; and a Walsh code estimating unit for minimizing the influence of the time error using the phase delay and the PN code information obtained by the differential demodulation of the PN code and phase delay estimating unit and estimating a Walsh code for the corresponding cell by synchronization demodulation.
Abstract:
Disclosed is an apparatus for acquiring initial frame timing in a communication system having a normalizer that calculates a normalized window power from powers of samples of received signal during a monitoring period, a cross power calculator that calculates a window cross power from cross powers of the samples during the monitoring period, and each cross power corresponds to multiplication of two of the samples, a divider that divides the window cross power by the normalized window power and outputs a metric for a sample corresponding to the monitoring period, and a peak-value detector that searches a sample having the maximum value among metrics for the samples of the received signals during a predetermined period, and the metrics are calculated by shifting the monitoring period, with a sample next to the sample searched by the peak-value detector being determined as a starting point of a frame.
Abstract:
A base station demodulator according to the exemplary embodiment of the present invention includes a vector index demodulator, and a channel value detector. The vector index demodulator demodulates CQI or ARQ ACK/NACK channels by multiplying QPSK modulation signals transmitted as m subcarriers in a tile by m conjugate complexes corresponding to the m subcarriers, and determines the greatest value of the demodulation results as a vector index. The channel value detector inputs n vector indexes demodulated by the vector index demodulator to a first shift register, inputs n subsequent vector indexes to a second shift register, and detects a channel value for the CQI or the ARQ ACK/NACK by repeating the above vector index input to the first and second shift registers m-times.
Abstract:
An apparatus for canceling interference includes a plurality of converters, a plurality of interference cancellation units, a plurality of variance detectors, and an output selecting unit. The plurality of converters converts a plurality of received signals to a plurality of frequency domain signals, respectively. The plurality of interference cancellation units cancel interference in the plurality of frequency domain signals using a plurality of interference cancellation schemes to generate a plurality of interference-canceled signals corresponding to the plurality of interference cancellation schemes, respectively. The plurality of variance detectors measure a plurality of amounts of residual interference corresponding to the plurality of interference-canceled signals, respectively. The output selecting unit selects a single interference-canceled signal with the least amount of residual interference from the plurality of interference-canceled signals, based on the plurality of amounts of residual interference.
Abstract:
The present invention relates to an apparatus and method of acquiring initial synchronization of a terminal in a mobile communication system. According to an exemplary embodiment of the present invention, one or more auto-correlation values of a preamble constituting a signal that is received from a base station are calculated. Averages of the calculated auto-correlation values according to samples are calculated, and then a peak value is detected among the calculated values. Then, a cell search is performed on the basis of the detected peak value, and a peak value from the result of the cell search is regularized. Then, the regularized peak value is compared with a predetermined reference value such that it is checked whether synchronization of a signal that has been searched is accurate or not. According to an exemplary embodiment of the present invention, a value obtained by regularizing a result of a cell search is compared with a reference value, and it is checked again whether an accurate start point of a frame is detected or not on the basis of a result of the comparison. Accordingly, false alarm rates can be reduced.
Abstract:
A receiving apparatus of a mobile terminal receiving a signal in a synchronous OFDM system under a multi-cell environment, including a demodulation start controller performing frame synchronization and cell search using a received signal and outputting information on a demodulation start point and a to-be-demodulated neighbor cell; a FFT unit converting a time-domain signal into a frequency-domain signal; a scramble code generator generating scramble codes for the to-be-demodulated neighbor cell from the demodulation start controller and the current cell; a correlator multiplying a signal from the FFT unit and scramble codes from the scramble code generator and outputting correlation signals; demodulators provided corresponding to a current cell and a maximum number of neighbor cells to be demodulated, and demodulating the correlation signals; and a decoder decoding signals from the demodulators and restoring original information transmitted from the corresponding cell.
Abstract:
The present invention relates to a transmitter of an OFDMA system capable of controlling a gain for variation of subchannel allocation, and a method thereof. The transmitter includes a subchannel number determining unit, a modulator, a digital/analogue converter, and a gain controller controlling the gain. The subchannel number determining unit determines the number of subchannels in use according to communication environments, and the modulator modulates transmission data with reference to the number of subchannels determined by the subchannel number determining unit and outputs the modulated transmission data. The digital/analogue converter converts the transmission data into analogue data and transmits the converted analogue data through a transmit antenna. The gain controller controls gains of the transmission data according to gain values corresponding to the number of subchannels.
Abstract:
The present invention relates to a communication path control apparatus for controlling a communication path between a plurality of DUs and a plurality of RFUs, and a plurality of antennas included in the plurality of RFUs and a wireless communication system including the communication path control apparatus. Each of the plurality of DUs, the plurality of RFUs, and the plurality of antennas has a unique identifier, and the path control apparatus controls paths between the plurality of DUs and the plurality of RFUs based on identifiers. Accordingly, the wireless communication system can transmit and receive a signal through a specific RFU and a specific antenna included in a specific RFU and performs the next-generation wireless BS operation method, such as CoMP and multi-BS MIMO.