Abstract:
The invention relates to tetrahydroquinoline derivatives and their use in the treatment and/or the prevention of a disease wherein the Epac protein is involved, such as inflammation, cancer, vascular diseases, kidney diseases, cognitive disorders and cardiac diseases.
Abstract:
An electrochemical capacitor includes a first electrode connected to a positive terminal of a power source during the charge of the electrochemical capacitor and a second electrode connected to a negative terminal of a power source during the charge of the electrochemical capacitor. The first and the second electrodes each have a carbon material. The electrochemical capacitor further includes a porous separator to separate the first and second electrodes and to be impregnated with an almost neutral aqueous electrolyte situated between the two electrodes. The neutral aqueous electrolyte has a salt formed by a metallic cation and an anion.
Abstract:
Disclosed is a method for controlling a hybrid vehicle power train, including a thermal drive chain and an electric drive chain, the electric drive chain including a traction battery, a voltage modulator, an inverter, first and second electrical machines. The voltage modulator is designed to modulate a supply voltage of an electric current from the traction battery to the first and second electrical machines. The method includes: a step of analytically calculating an optimal supply voltage using a mathematical expression that corresponds to the resolution of an equation expressed as
∂
P
b a t
∂
U e
= 0
,
where Ue is the supply voltage, Pbat is the electrical power supplied by the traction battery, and where the electrical power supplied by the traction battery is expressed as a quadratic function of the supply voltage; and a step of controlling the voltage modulator in such a way that it outputs the optimal supply voltage.
Abstract:
The application relates to the production of RNA of interest, more specifically of messenger RNA of interest or of long non-coding RNA of interest, by yeasts with recombinant pseudo-viral particles. The recombinant yeasts have been genetically modified in order to produce the RNA of interest in the form of a complex, particularly in the form of recombinant pseudo-viral particles. These recombinant pseudo-viral particles are produced from certain elements of yeast Ty retrotransposon, but do not retrotranscribe the RNA that they contain. Thus, the application relates to the components that are thus capable of being implemented or produced, and particularly to the nucleic acid constructs, kits, bacteria cells, yeast cells, culture or transfection media containing them, as well as to a method for producing a pharmaceutical composition, particularly for medical applications, more specifically for vaccines, anti-tumour and pro-regenerative applications.
Abstract:
The present invention relates to the radiolabelled compound of enantiomer (R,R) of 5-fluoro-3-4(-phenylpiperidin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol, and to this compound for use thereof in an in vivo diagnosis method, in particular of a cholinergic neurodegenerative disease selected for example from the group formed by Alzheimer's disease, dysmnesia, learning disability, schizophrenia, cognitive dysfunction, hyperactivity disorder, anxiety neurosis, depression, analgesia and Parkinson's disease.
Abstract:
A mixing tube with multiple shapes is provided, allowing additional injection of gas in order to keep the flow detached from the second shape in an ascent phase and to bring about, in a descent phase, a controlled detachment as a result of the change of slope between the two shapes. A propulsion nozzle for an engine of a spacecraft or aircraft is provided including such a mixing tube and a method for controlling the speed transition of the propulsion gases in such a nozzle in accordance with the altitude. Also, a method is provided for vectorising the thrust in such a nozzle by radial and asymmetrical injection of gas and a control method which prevents re-attachment of the jet to the second shape of such a propulsion nozzle for an engine of a spacecraft when it is in the take-off or landing phase.
Abstract:
Disclosed is a method for electrical supply of an apparatus by a system including an intermittent electrical source, electrical storage unit, a fuel cell, and an electrochemical unit for generating the fuel. The method includes steps of: determining a power balance of the system depending on the power consumed by the apparatus and supplied by the intermittent electrical source; receiving data representative of the stability of the power balance during a safety period; controlling the fuel cell and the electrochemical unit: to activate the electrochemical unit if the power balance is greater than a first threshold and the data are not characteristic of a subsequent decrease in the power balance; activating the fuel cell if the power balance is less than a second threshold, which is less than the first threshold, and the data are not characteristic of a subsequent increase in the power balance.
Abstract:
The invention describes a device (10) for dispensing microbubbles (30) for cell sonoporation, comprising: a tube configured to receive a vial (20) containing a solution (26) of microbubbles (30), at least two catheters (11, 12) arranged inside the tube and opening into the vial (20) when the latter is received by the tube, wherein, when the first catheter (11) is connected to a first air injection source, air can be injected into the vial (20) via the first catheter so as to generate an overpressure therein, the microbubbles (30) contained in the vial (20) entering the second catheter (12) and moving toward its second end (122). The invention also relates to a sonoporation device, a sonoporation process and a computer program product.
Abstract:
The present invention relates to a compound having the following formula (I): wherein:—A is a (hetero)aryl radical comprising from 5 to 10 carbon atoms, possibly substituted by at least one substituent chosen from the group consisting of: halogen atoms, amino, azido, cyano, nitro, hydroxyl, formyl, carboxyl, amido, (C1-C6)alkyl groups, halo(C1-C6)alkyl groups, (C1-C6)alkoxy groups, alkenyl groups, cycloalkenyl groups, and alkynyl groups, and—R is H, CN or CF3, or their pharmaceutically acceptable salts, racemates, diastereomers or enantiomers.