Narrow band omnidirectional reflectors and their use as structural colors
    41.
    发明授权
    Narrow band omnidirectional reflectors and their use as structural colors 有权
    窄带全向反射器及其作为结构颜色的用途

    公开(公告)号:US07903339B2

    公开(公告)日:2011-03-08

    申请号:US11837529

    申请日:2007-08-12

    IPC分类号: G02B1/10

    CPC分类号: G02B5/0833 G02B5/26

    摘要: Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.

    摘要翻译: 公开了一种多层结构,其中具有外表面和2和4之间的折射率的第一材料的第一层延伸穿过折射率在1和3之间的第二层的外表面。多层堆叠具有反射带 从0°到80°之间的角度观察时,小于200纳米,可用于在紫外线,可见光和红外光谱范围内反射窄范围的电磁辐射。 在一些情况下,多层结构的反射带小于100纳米。 此外,多层结构可以具有定义为小于2%的中等范围比例百分比的范围的量。

    SYNTHESIS OF Pb ALLOY AND CORE/SHELL NANOWIRES
    42.
    发明申请
    SYNTHESIS OF Pb ALLOY AND CORE/SHELL NANOWIRES 有权
    Pb合金和核/壳纳米管的合成

    公开(公告)号:US20110001096A1

    公开(公告)日:2011-01-06

    申请号:US11937225

    申请日:2007-11-08

    IPC分类号: C09K11/66 H01B1/02 C09K11/56

    摘要: Embodiments of the present invention are directed to methods of producing PbSexY1-x alloys and methods of producing PbSe/PbY core/shell nanowires. The method of producing PbSexY1-x alloys comprise providing PbSe nanowires, producing a PbY solution where Y═S or Te, adding the PbSe nanowires to an growth solution, and producing PbSexY1-x, nanowire alloys by adding the PbY solution to the heated growth solution comprising PbSe nanowires.

    摘要翻译: 本发明的实施方案涉及生产PbSexY1-x合金的方法和生产PbSe / PbY核/壳纳米线的方法。 生产PbSexY1-x合金的方法包括提供PbSe纳米线,产生PbY溶液,其中Y = S或Te,将PbSe纳米线加入到生长溶液中,并通过将PbY溶液加入到加热生长中生产PbSexY1-x纳米线合金 溶液包含PbSe纳米线。

    Methods For Producing Omni-Directional Multi-Layer Photonic Structures
    44.
    发明申请
    Methods For Producing Omni-Directional Multi-Layer Photonic Structures 有权
    用于生产全向多层光子结构的方法

    公开(公告)号:US20100209593A1

    公开(公告)日:2010-08-19

    申请号:US12389256

    申请日:2009-02-19

    IPC分类号: B05D5/06

    CPC分类号: G02B5/0825 G02B27/0012

    摘要: A method for producing a multi-layer photonic structure having at least one group of alternating layers of high index material and low index material may include, determining a characteristic property function for the multi-layer photonic structure, determining a thickness multiplier for the at least one group of alternating layers based on a comparison of the characteristic property function to a target profile, adjusting the characteristic property function with the determined thickness multiplier, and comparing an adjusted characteristic property function to the target profile, wherein, when the adjusted characteristic property function does not approximate the target profile, at least one additional group of layers is added to the multi-layer photonic structure.

    摘要翻译: 一种制备具有至少一组高折射率材料和低折射率材料的交替层的多层光子结构的方法可以包括:确定多层光子结构的特性属性函数,确定至少 基于特征属性函数与目标轮廓的比较,一组交替层,用所确定的厚度乘数调整特性属性函数,以及将经调整的特性属性函数与目标轮廓进行比较,其中当调节特征特性函数 不近似目标分布,至少一组另外的层被添加到多层光子结构。

    Narrow Band Omnidirectional Reflectors And Their Use As Structural Colors

    公开(公告)号:US20090161220A1

    公开(公告)日:2009-06-25

    申请号:US12388395

    申请日:2009-02-18

    IPC分类号: G02B5/28

    摘要: Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.

    Multi-Layer Photonic Structures Having Omni-Directional Reflectivity and Coatings Incorporating The Same
    46.
    发明申请
    Multi-Layer Photonic Structures Having Omni-Directional Reflectivity and Coatings Incorporating The Same 有权
    具有全向反射率的多层光子结构和包含其的涂层

    公开(公告)号:US20090153953A1

    公开(公告)日:2009-06-18

    申请号:US12389221

    申请日:2009-02-19

    IPC分类号: G02B5/00 B32B7/02

    摘要: A multi-layer photonic structure may include alternating layers of high index material and low index material having a form [H(LH)N] where, H is a layer of high index material, L is a layer of low index material and N is a number of pairs of layers of high index material and layers of low index material. N may be an integer ≧1. The low index dielectric material may have an index of refraction nL from about 1.3 to about 2.5. The high index dielectric material may have an index of refraction nH from about 1.8 to about 3.5, wherein nH>nL and the multi-layer photonic structure comprises a reflectivity band of greater than about 200 nm for light having angles of incidence from about 0 degrees to about 80 degrees relative to the multi-layer photonic structure. The multi-layer photonic structure may be incorporated into a paint or coating system thereby forming an omni-directional reflective paint or coating.

    摘要翻译: 多层光子结构可以包括具有[H(LH)N]形式的高折射率材料和低折射率材料的交替层,其中H是高折射率材料层,L是低折射率材料层,N是 多层高指数材料和低折射率材料层。 N可以是整数> = 1。 低折射率介电材料可以具有约1.3至约2.5的折射率nL。 高折射率介电材料可以具有约1.8至约3.5的折射率nH,其中对于具有大约0度的入射角的光,nH> nL和多层光子结构包括大于约200nm的反射带 到大约80度相对于多层光子结构。 多层光子结构可以结合到涂料或涂料体系中,从而形成全向反射涂料或涂料。

    Method of Producing Thermoelectric Material
    47.
    发明申请
    Method of Producing Thermoelectric Material 有权
    生产热电材料的方法

    公开(公告)号:US20090105988A1

    公开(公告)日:2009-04-23

    申请号:US11875266

    申请日:2007-10-19

    IPC分类号: G06F19/00 G01N25/18 G01N27/04

    CPC分类号: H01L35/26 G06F19/70

    摘要: A process for determining an optimum range of compositions for a nanocomposite thermoelectric material system, within which the material may exhibit generally high figure of merit values, is provided. The process is performed for a nanocomposite thermoelectric material system having a first component and a second component made from nanoparticles. The process includes selecting a plurality of material compositions for a nanocomposite thermoelectric material system to be investigated and calculating a thermal conductivity value and calculating an electrical resistance value for each material composition selected. In addition, at least one Seebeck coefficient is determined for the material compositions selected. Then, a plurality of figure of merit values are calculated using the calculated plurality of thermal conductivity values, the calculated plurality of electrical resistivity values and the determined at least one Seebeck coefficient. After the plurality of figure of merit values are calculated, an optimum compositional range can be determined within which the largest ZT values may be exhibited.

    摘要翻译: 提供了一种用于确定纳米复合热电材料系统的组合物的最佳范围的方法,其中材料可以表现出大体上的品质因数值。 对具有由纳米颗粒制成的第一组分和第二组分的纳米复合热电材料体系进行该方法。 该方法包括为待研究的纳米复合热电材料系统选择多种材料组合物,并计算热导率值并计算每种选择的材料组成的电阻值。 此外,对于所选择的材料组合物确定至少一个塞贝克系数。 然后,使用所计算的多个热导率值,所计算的多个电阻率值和所确定的至少一个塞贝克系数来计算多个品质因数值。 在计算出多个品质因数值之后,可以确定可以显示最大ZT值的最佳组成范围。

    Method of producing thermoelectric material

    公开(公告)号:US10811160B2

    公开(公告)日:2020-10-20

    申请号:US13117286

    申请日:2011-05-27

    摘要: A process for manufacturing a thermoelectric material having a plurality of grains and grain boundaries. The process includes determining a material composition to be investigated for the thermoelectric material and then determining a range of values of grain size and/or grain boundary barrier height obtainable for the material composition using current state of the art manufacturing techniques. Thereafter, a range of figure of merit values for the material composition is determined as a function of the range of values of grain size and/or grain boundary barrier height. And finally, a thermoelectric material having the determined material composition and an average grain size and grain boundary barrier height corresponding to the maximum range of figure of merit values is manufactured.