摘要:
An exemplary method includes providing at least two-dimensional position information, for at least two points in time, for an electrode located in a cardiac space; determining a local estimator based on the position information; and, based at least in part on the determined local estimator, selecting a configuration for delivering a cardiac pacing therapy or diagnosing a cardiac condition. Exemplary methods for regional estimators and exemplary methods for global estimators are also disclosed along with devices and systems configured to perform various methods.
摘要:
Techniques are provided for controlling spinal cord stimulation (SCS) or other forms of neurostimulation. Far-field cardiac electrical signals are sensed using a lead of the SCS device and neurostimulation is selectively delivering using a set of adjustable SCS control parameters. Parameters representative of cardiac rhythm are derived from the far-field cardiac electrical signals. The parameters representative of cardiac rhythm are correlated with SCS control parameters to thereby map neurostimulation control settings to cardiac rhythm parameters. The delivery of further neurostimulation is then controlled based on the mapping of neurostimulation control settings to cardiac rhythm parameters to, for example, address any cardiovascular disorders detected based on the far-field cardiac signals. In this manner, a closed loop control system is provided to automatically adjust SCS control parameters to respond to changes in cardiac rhythm such as changes associated with ischemia, arrhythmia or heart failure.
摘要:
Techniques are provided for use with implantable cardiac stimulation devices equipped for multi-site left ventricular (MSLV) cardiac pacing. Briefly, intraventricular and interventricular conduction delays are detected for paced cardiac events. Maximum pacing time delays are determined for use with MSLV pacing where the maximum pacing time delays are set based on the conduction delays to values sufficient to avoid capture problems due to wavefront propagation, such as fusion or lack of capture. MSLV pacing delays are then set to values no greater than the maximum pacing delays and cardiac resynchronization therapy (CRT) is delivered using the MSLV pacing delays. In an example where an optimal interventricular pacing delay (VV) is determined in advance using intracardiac electrogram-based or hemodynamic-based optimization techniques, the optimal value for VV can be used as a limiting factor when determining the maximum MSLV pacing time delays.
摘要:
An exemplary method includes selecting multiple electrodes located in a patient; acquiring position information during one or more cardiac cycles for the multiple electrodes where the acquiring includes using each of the electrodes for measuring one or more electrical potentials in an electrical localization field established in the patient; calculating one or more vector metrics based on the acquired position information for one or more vectors, each vector defined by two of the multiple electrodes; and analyzing the one or more vector metrics to assess cardiac performance during the one or more cardiac cycles. Various other methods, devices, systems, etc., are also disclosed.
摘要:
Embodiments of the present invention are directed to implantable systems, and methods for use therewith, that monitor and modify a patient's arterial blood pressure without requiring an intravascular pressure transducer. In accordance with an embodiment, for each of a plurality of periods of time, there is a determination one or more metrics indicative of pulse arrival time (PAT), each of which are indicative of how long it takes for the left ventricle to generate a pressure pulsation that travels from the patient's aorta to a location remote from the patient's aorta. Based on the one or more metrics indicative of PAT, the patient's arterial blood pressure is estimated. Changes in the arterial blood pressure are monitored over time. Additionally, the patient's arterial blood pressure can be modified by initiating and/or adjusting pacing and/or other therapy based on the estimates of the patient's arterial blood pressure and/or monitored changes therein.
摘要:
Techniques are provided for use with an implantable cardiac stimulation device equipped for multi-site left ventricular (MSLV) pacing using a multi-pole LV lead. In one example, referred to herein as QuickStim, cardiac pacing configurations are optimized based on an assessment of hemodynamic benefit and device longevity. In another example, referred to herein as QuickSense, cardiac sensing configurations are optimized based on sensing profiles input by a clinician. Various virtual sensing channels are also described that provide for the multiplexing or gating of sensed signals. Anisotropic oversampling is also described.
摘要:
A method includes selecting an electrode located in a patient; acquiring position information with respect to time for the electrode where the acquiring uses the electrode for repeatedly measuring electrical potentials in an electrical localization field established in the patient; calculating a stability metric for the electrode based on the acquired position information with respect to time; and deciding if the selected electrode, as located in the patient, has a stable location for sensing biological electrical activity, for delivering electrical energy or for sensing biological electrical activity and delivering electrical energy. Position information may be acquired during one or both of intrinsic or paced activation of a heart and respective stability indexes calculated for each activation type.
摘要:
Methods and systems are provided for determining pacing parameters for an implantable medical device (IMD). The methods and systems provide electrodes in the right atrium (RA), right ventricle (RV) and left ventricle (LV). The methods and systems sense RV cardiac signals and LV cardiac signals at an RV electrode and an LV electrode, respectively, over multiple cardiac cycles, to collect global activation information. The methods and systems identify a T-wave in the LV cardiac signal. The methods and systems calculate a repolarization index based at least in part on a timing of the T-wave identified in the LV cardiac signal. The methods and systems set at least one pacing parameter based on the repolarization index, wherein the at least one pacing parameter that is set represents at least one of an AV delay, an inter-ventricular interval and an intra-ventricular interval. Optionally, the methods and systems may deliver an RV pacing stimulus at the RV electrode such that the LV cardiac signal sensed thereafter includes the RV pacing stimulus followed by a T-wave. The methods and systems determine a waveform metric such as at least one of a QT interval, T-wave duration, and T-wave amplitude, and utilize the waveform metric to determine as the repolarization index.
摘要:
CRT settings for an implantable medical device are determined by applying pacing pulses to heart chambers of a scheme of different combinations of interchamber delays. A respective width parameter value representing an R or P wave width is determined for each such delay combination based on an ECG representing signal and the width parameter values are employed to estimate a parametric model defining the width parameter as a function of interchamber delays. Candidate interchamber delays that minimize the width parameter are determined from the parametric model and employed to determine optimal CRT settings. The technique provides an efficient way of finding optimal CRT settings when multiple pacing sites are available in a heart chamber.
摘要:
An exemplary method generates a map of a pacing parameter, a sensing parameter or one or more other parameters based in part on location information acquired using a localization system configured to locate electrodes in vivo (i.e., within a patient's body). Various examples map capture thresholds, qualification criteria for algorithms, undesirable conditions and sensing capabilities. Various other methods, devices, systems, etc., are also disclosed.