Abstract:
Systems, methods, and devices for compressing block acknowledgment (ACK) frames/packets are described herein. In some aspects, a method of communicating in a wireless network includes a compressed block acknowledgment frame including a bitmap, the bitmap indicating receipt of a plurality of fragments of a single data unit. The method further includes transmitting the compressed block acknowledgment frame.
Abstract:
Certain aspects of the present disclosure relate to a technique for communicating Channel State Information (CSI) feedback. In some aspects, the CSI feedback is communicated in a very high throughput (VHT) wireless communications system.
Abstract:
Certain aspects of the present disclosure relate to a technique for communicating Channel State Information (CSI) feedback. In some aspects, the CSI feedback is communicated in a very high throughput (VHT) wireless communications system.
Abstract:
A method includes receiving, at a wireless device, a frame via a sub-1 gigahertz (GHz) wireless network. The frame includes a signal (SIG) unit including a length field and an aggregation field. The length field may be interpreted as a number of bytes or as a number of symbols based on a value of the aggregation field and based on whether the frame is associated with a 1 megahertz (MHz) bandwidth mode, based on whether the frame includes either a short format preamble or a long format preamble, or based on whether the frame is determined to be a single user (SU) frame or a multi user (MU) frame.
Abstract:
A method includes determining, at a first transmitter, a clear channel access (CCA) threshold associated with reuse of a first transmit opportunity (TXOP) of a message. The method further includes sending, from the first transmitter to a first receiver, at least a portion of the message, wherein the portion of the message indicates the CCA threshold.
Abstract:
Systems and methods for formatting frames in neighborhood aware networks are described herein. One aspect of the subject matter described in the disclosure provides a method of communicating in a wireless neighborhood aware network (NAN). The method includes determining a discovery period. The method further includes generating a discovery window information element indicating a start time of a discovery window. The method further includes generating a NAN beacon or other sync frame comprising the discovery period and the discovery window information element. The method further includes transmitting, at a wireless device, the NAN beacon or other sync frame during the discovery window.
Abstract:
Systems, methods, and devices for a delay indication in a wireless message are described herein. In one aspect an apparatus for wireless communication is provided. The apparatus includes a receiver configured to receive a first message from a second apparatus. In some aspects, the first message is a request-to-send (RTS) message. The access point further including a processing system, configured to generate a second message in response to reception of the first message. The second message comprising a delay indicator, the delay indicator indicating a delay after which a third message may be transmitted by the second apparatus and a transmitter configured to transmit the second message to the second apparatus.
Abstract:
Systems, methods, and devices for communicating in a wireless network are provided. In some aspects, an access point may comprise a receiver configured to receive an access request message from a wireless station, the message comprising an indication of a plurality of network connection available to the wireless station including a link to a second access point. The receiver may be further configured to receive connectivity information associated with the link, based on the indication, from the second access point. The access point may further comprise a processor configured to determine whether to grant access to the wireless station based, at least in part, on the indication and the connectivity information, and a transmitter configured to transmit a response to the wireless station based on the determining.
Abstract:
Methods and stations for wireless communication are described herein. In some aspects, the station may include a processing circuit configured to process a first signal transmitted to the station, the first signal indicating a target wake up time when an activation signal is expected to be received. The station may further include a wake-up circuit configured to transition a first receiver to an awake state based on the indicated target wake up time. The first receiver is configured to receive the activation signal at the indicated target wake up time. The station may further include a second receiver configured to transition to an awake state based on the first receiver receiving the activation signal and receive a second signal while in the awake state.
Abstract:
Systems, methods, and devices for communicating data in a wireless communications network are described herein. In some aspects, a wireless device includes a first receiver and a second receiver. The second receiver may be configured to consume less power than the first receiver. The second receiver receives a second signal wherein the second signal comprises a wake-up signal configured in NDP format including a signal field. The wireless device includes a circuit configured to take at least one action based on the second signal.