Abstract:
An image processing device includes a processor; and a memory which stores a plurality of instructions, which when executed by the processor, cause the processor to execute, taking an image containing an imaging lens; and embedding information in a display image based on image information of an object contained in the image.
Abstract:
In an embodiment, a method of decoding a watermarked video includes receiving a video including a watermark and three or more pilot signals. The method includes attempting to detect the watermark and retrieve a corresponding message in the video based on one or more decoding starting points of the video. The method includes outputting the message if the attempt is successful. If the attempt fails, the method includes detecting the pilot signals in the video; based on the detected pilot signals, estimating a geometric distortion of the video; inverting the geometric distortion for the video to generate a warped video; and attempting to detect the watermark and retrieve the corresponding message in the warped video based on one or more decoding starting points of the warped video.
Abstract:
In one implementation, a computer-implemented method for identifying hidden features in digital images includes: detecting, by the computer system, one or more visual features in a digital image; applying one or more edge detection filters to the digital image to generate a modified digital image; detecting one or more candidate hidden features that are included in the modified digital image; comparing the one or more visual features in the digital image with the one or more candidate hidden features; determining whether a hidden image is present in the digital image based on the comparison of the one or more visual features in the digital image with the one or more candidate hidden features; and providing, by the computer system and in response to determining that a hidden image is present in the digital image, information that identifies that the hidden image has been detected.
Abstract:
The present invention relate generally to digital watermarking and data hiding. One claim recites a method including: obtaining first data and second color data, the first color data and the second color data represent data from a color image signal or color video signal; obtaining a digital watermark pattern, the pattern aiding detection of a watermark message; separating the digital watermark pattern into first frequency components and second frequency components; utilizing a programmed electronic processor or electronic processing circuitry, modifying the first color data by hiding the first frequency components therein; and utilizing a programmed electronic processor or electronic processing circuitry, modifying the second color data by hiding the second frequency components therein. Of course, other combinations and claims are provided too.
Abstract:
An encoding system is for generating a data-bearing halftone image. The encoding system is configured to: convert a grayscale image into a halftone image having a plurality of image cells ; select, from the halftone image, at least one of the image cells to be a carrier cell according to a set of reference dot patterns, the carrier cell having a dot pattern identical to one of the reference dot patterns ; and generate a data-bearing halftone image by replacing the dot pattern of the carrier cell by a specified one of multiple encoding dot patterns of one of a plurality of the sets of encoding dot patterns each being associated with a code. The data-bearing halftone image is encoded with a code associated with the one of the sets of the encoding dot patterns.
Abstract:
An object (e.g., a driver's license) is tested for authenticity using imagery captured by a consumer device (e.g., a mobile phone camera). Corresponding data is sent from the consumer device to a remote system, which has secret knowledge about features indicating object authenticity. The phone, or the remote system, discerns the pose of the object relative to the camera from the captured imagery. The remote system tests the received data for the authentication features, and issues an output signal indicating whether the object is authentic. This testing involves modeling the image data that would be captured by the consumer device from an authentic object—based on the object's discerned pose (and optionally based on information about the camera optics), and then comparing this modeled data with the data sent from the consumer device. A great variety of other features and arrangements are also detailed.
Abstract:
This disclosure provides methods and systems of embedding and extracting information in a printed document. According to one exemplary embodiment, a method is provided wherein information is encoded by one or more partial or complete gaps in a line associated with a form, and the line gaps are patterned to provide N-bit codes.
Abstract:
Methods are provided for encoding watermark information into media data containing a series of digital samples in a sample domain. The methods involve: dividing the series of digital samples into a plurality of sections in the sample domain, each section comprising a corresponding plurality of samples; processing the corresponding plurality of samples in each section to obtain a single energy value associated with each section; grouping the sections into groups, each group containing three or more sections; for each group, assigning a nominal bit value according to a bit assignment rule, assigning a watermark bit value and comparing the watermark bit value to the nominal bit value. If the nominal bit value and the watermark bit value do not match, modifying one or more energy values of one or more corresponding sections in the group where re-application of the bit assignment rule would assign the watermark bit value to the group.
Abstract:
The disclosure describes methods and apparatus of providing steganographic indicia or digital watermarking in image or video data. One implementation provides a method of embedding a digital watermark in image data captured by an imager, with watermark embedding occurring on-chip with the imager. Another implementation provides a method of managing images. Each of the images comprises plural-bit data steganographically embedded therein in the form of a digital watermark, with the plural-bit data corresponding to a geo-location. Yet another implementation provides a method of identifying locations on a map, with the map being for display via a computer display. Still another implementation provides a method of introducing a watermark message to a watermark embedder located on-chip with an image array. Other implementations and embodiments are provided as well.
Abstract:
System(s) and method(s) for embedding and extracting a watermark from a digital media are described. The method may include embedding a set of watermark bits in a N*N block of the digital media based on a local binary pattern (LBP) synthesis process. The LBP synthesis process comprises changing a value of a neighbor of a central pixel of the N*N block to make the value of the neighbor greater than a value of the central pixel when a watermark bit corresponding to the neighbor is ‘1’ and changing the value of the neighbor of the central pixel to make the value of the neighbor lesser than the value of the central pixel when the watermark bit corresponding to the neighbor is ‘0’.