Abstract:
This present invention provides a fast data transfer for a concurrent transfer of multiple ROI areas between an internal memory array and a single memory where each PE can specify the parameter set for the area to be transferred independently from the other PE. For example, for a read transfer, the requests are generated in a way that first the first element of each ROI area is requested from the single memory for each PE before the following elements of each ROI area are requested. After the first element from each ROI area has been received from the single memory in a control processor and has been transferred from the control processor over a bus system to the internal memory array, all elements are in parallel stored to the internal memory array. Then, the second element of each ROI area is requested from the single memory for each PE. The transfer finishes after all elements of each ROI area are transferred to their assigned PEs.
Abstract:
An apparatus, system, and method are disclosed for managing a non-volatile storage medium. A storage controller receives a message that identifies data that no longer needs to be retained on the non-volatile storage medium. The data may be identified using a logical identifier. The message may comprise a hint, directive, or other indication that the data has been erased and/or deleted. In response to the message, the storage controller records an indication that the contents of a physical storage location and/or physical address associated with the logical identifier do not need to be preserved on the non-volatile storage medium.
Abstract:
An apparatus, system, and method are disclosed for managing a non-volatile storage medium. A storage controller receives a message that identifies data that no longer needs to be retained on the non-volatile storage medium. The data may be identified using a logical identifier. The message may comprise a hint, directive, or other indication that the data has been erased and/or deleted. In response to the message, the storage controller records an indication that the contents of a physical storage location and/or physical address associated with the logical identifier do not need to be preserved on the non-volatile storage medium.
Abstract:
A method, processor, and computer system for handling interrupts within a hierarchical register structure. The method includes receiving at a root-level register an indication of an interrupt occurring at a lower level register in the register structure, using a system interrupt handler to invoke an error handler assigned to a set of registers of the structure that includes the lower level register, and using the invoked error handler to handle the interrupt and return to the system interrupt handler.
Abstract:
A method, processor, and computer system for handling interrupts within a hierarchical register structure. The method includes receiving at a root-level register an indication of an interrupt occurring at a lower level register in the register structure, using a system interrupt handler to invoke an error handler assigned to a set of registers of the structure that includes the lower level register, and using the invoked error handler to handle the interrupt and return to the system interrupt handler.
Abstract:
This present invention provides a fast data transfer for a concurrent transfer of multiple ROI areas between an internal memory array and a single memory where each PE can specify the parameter set for the area to be transferred independently from the other PE. For example, for a read transfer, the requests are generated in a way that first the first element of each ROI area is requested from the single memory for each PE before the following elements of each ROI area are requested. After the first element from each ROI area has been received from the single memory in a control processor and has been transferred from the control processor over a bus system to the internal memory array, all elements are in parallel stored to the internal memory array. Then, the second element of each ROI area is requested from the single memory for each PE. The transfer finishes after all elements of each ROI area are transferred to their assigned PEs.
Abstract:
Embodiments are disclosure relating to a front-end controller in a storage system. In one embodiment, a storage request is received at a storage device in a group of storage devices. The storage request identifies one or more data segments of a data stripe pattern assigned to the storage device by a front-end controller of the group. In such an embodiment, the storage device communicates the identified data segments with a storage client independently of the front-end controller. In some embodiments, the storage system includes a front-end, distributed redundant array of independent drives (RAID). In one such embodiment, the storage devices independently receive storage requests from a client over a network, and one or more of the storage devices are designated as parity-mirror storage devices for a stripe.
Abstract:
An apparatus and system are disclosed for a storage area network (“SAN”). In one embodiment, a computer system includes an internal storage device and an internal storage controller. In this embodiment, the internal storage controller is configured to implement a SAN that includes at least the internal storage device and a storage device external to the computer system. In this embodiment, the internal storage controller is further configured to service a storage request received from a client that involves data stored by the internal storage device. In this embodiment, the internal storage controller is configured to communicate with the external storage device via a network.
Abstract:
Apparatus, systems, and methods are disclosed for managing concurrent storage requests. A multiple storage request receiver module is configured to recognize at least two storage requests from clients for data in storage devices of a storage device set. The at least two concurrent storage requests address a common portion of data. A sequencer module is configured to determine a first storage request and a second storage request from the concurrent storage requests by way of selection criteria. The sequencer module is configured to ensure completion of the first storage request prior to executing the second storage request by receiving an acknowledgment from each of the storage devices of the storage device set that received portions of the first storage request. The portions may be sent to the storage devices to execute the first storage request.
Abstract:
An apparatus, system, and method are disclosed for managing a non-volatile storage medium. A storage controller receives a message that identifies data that no longer needs to be retained on the non-volatile storage medium. The data may be identified using a logical identifier. The message may comprise a hint, directive, or other indication that the data has been erased and/or deleted. In response to the message, the storage controller records an indication that the contents of a physical storage location and/or physical address associated with the logical identifier do not need to be preserved on the non-volatile storage medium.