Abstract:
Embodiments relate generally to wearable electrical and electronic hardware, computer software, wired and wireless network communications, and to wearable/mobile computing devices. More specifically, various embodiments are directed to, for example, a flexible substrate. In one example, a wearable device may include a framework configured to be worn or attached, and a flexible substrate coupled to the framework. The flexible substrate may include a first end and a second end, and may include one or more conductive layer structures and a conductive laminate structure. The flexible substrate may include rigid regions configured to receive one or more components including a sensor, an electrode, and/or a logic circuit (e.g., bioimpedance logic circuit).
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, human-computing interfaces, wired and wireless network communications, data processing, computing devices, watches, watch bands, and wrist-worn watch-enabled devices. More specifically, techniques for adopting electronic devices using data from a wearable device, such as a data-capable watch band are described. In some examples, a wearable device can include an adoption controller configured to detect the short-range communication link. Further, the wearable device can be configured to transmit key data to an electronic device to transition the electronic device from a lender mode of operation to a lendee mode of operation to enable the wearer to use the electronic device.
Abstract:
Systems and methods are described for clamping a headset in a calibration system using a clamp system that includes a clamp, platform, and one or more spindles (e.g., cushion spindles) to minimize or eliminate issues associated with positioning of headsets. The clamp system comprises a mount having a receptacle. When a device is introduced to the mount the receptacle receives at least a portion of a device. The clamp system includes a clamp attached to the mount and having a first arm rotateably coupled to a second arm that controls the first arm between an open position and a closed position. A platform and at least one spindle are connected to the first arm. When the device is present in the receptacle and the first arm is in the closed position the spindle contacts the device and seats or secures the device in the receptacle.
Abstract:
Embodiments relate generally to wearable electrical and electronic hardware, computer software, wired and wireless network communications, and to wearable/mobile computing devices configured to process audio, in view of noise, and communicate audio. More specifically, disclosed are wearable devices, platforms and methods directed to, for example, provide wearable communication devices, such as a headset. In various embodiments, a wearable communication device includes an array of microphone, an audio processor coupled to the array of microphones, and a vibration detector including, for example, a skin surface microphone (“SSM”).
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and wearable computing devices in capturing and deriving physiological characteristic data. Techniques associated with an array of electrodes and methods are described, including selecting a subset of electrodes implemented on a wearable device, driving a first signal to a target location using the subset of electrodes, receiving a second signal from the target location, the second signal having a physiological component and a motion component, generating a raw physiological signal using a motion artifact reduction unit, generating a first physiological characteristic data using the raw physiological signal, and deriving a second physiological characteristic using the first physiological characteristic data.
Abstract:
A wireless device may be enabled to pair (e.g., establish a wireless communication link) with multiple other wireless devices that are connected with a wireless network without the need to conduct a separate pairing operation between the wireless device and each of the other network-connected wireless devices. Data exchanged between the wireless device and a peer device (e.g., one of a group of network-connected wireless devices) and that may be used to authenticate communications between the wireless device and the peer device (e.g., a link key) may be stored in a network-accessible data storage and retrieval system. The link key may be used by the wireless device when attempting to establish communications with a different peer device (e.g., another one of the network-connected wireless devices) and may be retrieved by the other network-connected peer devices and may be used to enable authenticated communications between the other peer devices and the wireless device.
Abstract:
Systems, apparatus, devices, and methods for converting electrical signals into sound using an acoustic transducer. The inventive acoustic transducer utilizes the motion of an airfoil shaped element to generate a sound wave, with the airfoil element being driven in response to an electrical signal input to a suitable driving element. In some embodiments, the airfoil element or elements act to mechanically couple the motion of an armature attached to the driver to the surrounding air, producing sound waves in a more efficient manner than typical acoustic transducer devices. Embodiments of the invention may be used in the design of loudspeakers, earpieces, headphones, and other devices for which a high efficiency transducer is desired.
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and wearable computing devices, audio devices, and communication devices for facilitating the presentation of personal audio. More specifically, disclosed are an apparatus and method to form directional audio personal to a user in a non-occluded manner. In one embodiment, a personal audio and communication devices can include a first directional speaker disposed at a first mounting region of a first support member. The first support member is configured to position the first directional speaker adjacent a first ear in substantial alignment with the first ear. Also included is a second directional speaker disposed at a second mounting region of a second support member. The second support member is configured to position the second directional speaker adjacent a second ear in substantial alignment with the second ear.
Abstract:
Communication systems are described, including both portable handset and headset devices, which use a number of microphone configurations to receive acoustic signals of an environment. The microphone configurations include, for example, a two microphone array including two unidirectional microphones, and a two-microphone array including one unidirectional microphone and one omnidirectional microphone. The communication systems also include Voice Activity Detection (VAD) devices to provide information of human voicing activity. Components of the communications systems receive the acoustic signals and voice activity signals and, in response, automatically generate control signals from data of the voice activity signals. Components of the communication systems use the control signals to automatically select a denoising method appropriate to data of frequency subbands of the acoustic signals. The selected denoising method is applied to the acoustic signals to generate denoised acoustic signals when the acoustic signal includes speech and noise.