Abstract:
There is provided a plasma processing apparatus, including: a chamber main body; a plasma trap installed inside a chamber provided by the chamber main body, and configured to divide the chamber into a first space and a second space; a mounting table installed in the second space; a plasma source configured to excite gases supplied to the first space; and a potential adjustment part including an electrode to be capacitively coupled to a plasma generated in the first space, and configured to adjust a potential of the plasma.
Abstract:
A plasma processing apparatus includes a high frequency antenna having first and second antenna elements. One end of the first antenna element is grounded and the other end thereof is connected to a high frequency power supply. One end of the second antenna element is an open end and the other end thereof is connected to either one of the one end and the other end of the first antenna element, a line length of the second antenna element having a value obtained by multiplying ((λ/4)+nλ/2) by a fractional shortening (λ is a wavelength of high frequency in vacuum and n is a natural number). A circuit viewed from the high frequency power supply toward the high frequency antenna is configured to generate, when a frequency of a high frequency power is changed, two resonant frequencies by an adjustment of the impedance adjustment unit.
Abstract:
An apparatus for measuring a thickness or wear amount and a temperature of the ceramic member by using a terahertz wave includes a terahertz wave generating unit configured to output a terahertz wave, a terahertz wave analysis unit configured to analyze a terahertz wave and an optical system configured to guide the terahertz wave output from the terahertz wave generating unit to the ceramic member and guide reflected waves of the terahertz wave reflected from the ceramic member to the terahertz wave analysis unit. The terahertz wave analysis unit obtains an optical path difference between a first reflection wave reflected from a front surface of the ceramic member and a second reflection wave reflected from a rear surface of the ceramic member and measures a thickness of the ceramic member based on the optical path difference.
Abstract:
A temperature measuring method of a component of a substrate processing chamber including a surface being worn or being deposited with a foreign material by using. The method includes: providing data representing a relationship between a temperature of the component and an optical path length of a predetermined path within the component; measuring an optical path length of the predetermined path within the component by using optical interference of reflection lights of a low-coherence light from the component when the low-coherence light is irradiated onto the component to travel through the predetermined path; and obtaining a temperature of the component by comparing the measured optical path length with the data.
Abstract:
A plasma processing apparatus is provided. According to the apparatus, a main antenna connected to a high frequency power source and an auxiliary antenna electrically insulated from main antenna is arranged. Moreover, projection areas when the main antenna and the auxiliary antenna are seen in a plan view are arranged so as not to overlap with each other. More specifically, the auxiliary antenna is arranged on a downstream side in a rotational direction of the turntable relative to the main antenna. Then, a first electromagnetic field is generated in the auxiliary antenna by way of an induction current flowing through the main antenna, and a second induction plasma is generated even in an area under the auxiliary antenna in addition to an area under the main antenna by resonating the auxiliary antenna.
Abstract:
A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.
Abstract:
A plasma processing apparatus includes a substrate support. The substrate support includes a base, an electrostatic chuck, a chuck electrode, and an electrode structure. The electrostatic chuck is disposed on the base and has a central region and an annular region. The chuck electrode is disposed in the central region. The electrode structure is disposed below the chuck electrode in the central region and is placed in an electrically floating state. The electrode structure includes a first electrode layer, a second electrode layer disposed below the first electrode layer, and one or more connectors that connect the first electrode layer and the second electrode layer. At least one bias power supply is electrically coupled to the substrate support.
Abstract:
Provided is a technique capable of suppressing pressure fluctuations within a plasma processing chamber. A plasma processing apparatus according to the present disclosure includes: a chamber; a gas supply that supplies a processing gas into the chamber; a power supply that generates a source RF signal to form a plasma from the processing gas within the chamber; a storage that stores in advance a source set value that is a set value of a parameter of the source RF signal; a pressure regulation valve connected to the chamber, the pressure regulation valve being configured to regulate an internal pressure of the chamber; an opening degree calculator that calculates an opening degree of the pressure regulation valve, the opening degree being calculated based on the source set value; and an opening degree controller that controls the opening degree of the pressure regulation valve based on the calculated opening degree.
Abstract:
A control method of a plasma processing apparatus including a first electrode that places a workpiece thereon includes supplying a bias power to the first electrode, and supplying a source power having a frequency higher than that of the bias power into a plasma processing space. The source power has a first state and a second state. The control method further includes a first control process of alternately applying the first state and the second state of the source power in synchronization with a signal synchronized with a cycle of a radio frequency of the bias power, or a phase within one cycle of a reference electrical state that represents any one of a voltage, current, and electromagnetic field measured in a power feeding system of the bias power.
Abstract:
A plasma processing apparatus includes a chamber, a substrate support, a radio-frequency power supply, and a bias power supply controller. The radio-frequency power supply generates source radio-frequency power to generate plasma in the chamber. The bias power supply periodically provides bias energy having a waveform cycle to a bias electrode on the substrate support. The radio-frequency power supply adjusts a source frequency of the source radio-frequency power in an n-th phase period in an m-th waveform cycle of a plurality of waveform cycles based on a change in a degree of reflection of the source radio-frequency power. The change in the degree of reflection is identified with the source frequency being set differently in the n-th phase period in each of two or more waveform cycles preceding the m-th waveform cycle.