Abstract:
Disclosed is a digital television system carrying out modulation/demodulation by VSB (vestigial side band). A VSB transmitter includes an additional error correction encoder designed in a manner that a signal mapping of a TCM encoder is considered, a multiplexer (MUX), a TCM encoder operating in a manner corresponding to state transition processes of the additional error correction encoder, and a signal transmission part including an RF converter. And, A VSB receiver includes a signal receiver part receiving a signal transmitted from the transmitter, a TCM decoder, a signal processing part including a derandomizer, and an additional error correction decoder part.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A vestigial sideband (VSB) modulation transmission system and a method for encoding an input signal in the system are disclosed. According to the present invention, the VSB transmission system includes a convolutional encoder for encoding an input signal, a trellis-coded modulation (TCM) encoder for encoding the convolutionally encoded signal, and a signal mapper mapping the trellis-coded signal to generate a corresponding output signal. Different types of the convolutional encoders are explored, and the experimental results showing the performances of the VSB systems incorporating each type of encoders reveals that a reliable data transmission can be achieved even at a lower input signal to noise ratio when a convolutional encoder is used as an error-correcting encoder in a VSB system.
Abstract:
A VSB communication system or transmitter for processing supplemental data packets with MPEG-II data packets includes a VSB supplemental data processor and a VSB transmission system. The VSB supplemental data processor includes a Reed-Solomon coder for coding the supplemental data to be transmitted, a null sequence inserter for inserting a null sequence to an interleaved supplemental data for generating a predefined sequence, a header inserter for inserting an MPEG header to the supplemental data having the null sequence inserted therein, a multiplexer for multiplexing an MPEG data coded with the supplemental data having the MPEG header added thereto in a preset multiplexing ratio and units. The output of the multiplexer is provided to an 8T-VSB transmission system for modulating a data field from the multiplexer and transmitting the modulated data field to a VSB reception system.
Abstract:
Disclosed is a digital television system carrying out modulation/demodulation by VSB (vestigial side band) . A VSB transmitter includes an additional error correction encoder designed in a manner that a signal mapping of a TCM encoder is considered, a multiplexer (MUX), a TCM encoder operating in a manner corresponding to state transition processes of the additional error correction encoder, and a signal transmission part including an RF converter. And, A VSB receiver includes a signal receiver part receiving a signal transmitted from the transmitter, a TCM decoder, a signal processing part including a derandomizer, and an additional error correction decoder part.
Abstract:
A vestigial sideband (VSB) modulation transmission system and a method for encoding an input signal in the system are disclosed. According to the present invention, the VSB transmission system includes a convolutional encoder for encoding an input signal, a trellis-coded modulation (TCM) encoder for encoding the convolutionally encoded signal, and a signal mapper mapping the trellis-coded signal to generate a corresponding output signal. Different types of the convolutional encoders are explored, and the experimental results showing the performances of the VSB systems incorporating each type of encoders reveals that a reliable data transmission can be achieved even at a lower input signal to noise ratio when a convolutional encoder is used as an error-correcting encoder in a VSB system.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing tie data from tie modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.