Abstract:
A liquid crystal display device includes: a first substrate for which a single pixel includes: first, second and third thin film transistors on the first substrate; a pixel electrode including a first subpixel electrode and a second subpixel electrode which are connected to the first thin film transistor and the second thin film transistor, respectively; and a divided reference voltage line connected to the third thin film transistor; a second substrate facing the first substrate; a common electrode on the second substrate; and a liquid crystal layer between the pixel electrode and the common electrode and including liquid crystal molecules. The third thin film transistor includes an electrically floating gate electrode, a source electrode defined by an extended portion of a terminal of the second thin film transistor, and a drain electrode defined by an extended portion of the divided reference voltage line.
Abstract:
A liquid crystal display is provided. A liquid crystal display comprises a first transistor having a gate electrode connected to a scan line, one electrode connected to a data line, and the other electrode connected to a first liquid crystal capacitor, a second transistor having one electrode connected to the data line, and the other electrode connected to a second liquid crystal capacitor through a first node, a third transistor having one electrode connected to the data line, and the other electrode connected to a third liquid crystal capacitor through a second node, a first distribution transistor having one electrode connected to the first node, and the other electrode connected to a sustain line and a second distribution transistor having one electrode connected to the second node, and the other electrode connected to the sustain line.
Abstract:
A liquid crystal display includes a lower substrate and an upper substrate facing each other, a liquid crystal layer provided between the lower substrate and the upper substrate, a plurality of pixel electrodes provided on the lower substrate, extended in a substantially horizontal direction, and including a thin film transistor forming region and a display area, a reference voltage line extended in a substantially vertical direction along a center of the display area, a gate line provided on the lower substrate and extended in the substantially horizontal direction between neighboring pixel electrodes of the plurality of pixel electrodes, a data line provided on the lower substrate and crossing the gate line, and a shield electrode overlapping the gate line and including a curved portion which is disposed on an edge portion of the pixel electrode and overlaps the data line.
Abstract:
A stereoscopic image display device includes an image compensator, a signal controller, a data driver, and a display panel. The image compensator is configured to convert input image data to revised image data. The revised image data is obtained by compensating for temperature variations of the display panel. The signal controller is configured to output the revised image data. The data driver is configured to receive the revised image data. The display panel includes a plurality of pixels configured to display a left eye image and a right eye image in response to receiving a data voltage from the data driver. The image compensator includes a temperature compensation lookup table selector having a temperature compensation lookup table, and a standard lookup table selector having a standard lookup table and configured to select the revised image data according to correction values selected from the temperature compensation lookup table.
Abstract:
A liquid crystal display includes: a first and second substrates disposed opposite to each other; a gate line and a divided reference voltage line on the first substrate; a gate insulating layer on the gate line and the divided reference voltage line; a semiconductor layer on the gate insulating layer; a data line on the semiconductor layer; a passivation layer on the data line; a pixel electrode on the passivation layer; and a common electrode on the second substrate, where the divided reference voltage line and the data line are connected to a data driving line extension and a divided reference voltage driving line extension at a side of the first substrate, a common voltage driving line extension is at a side of the first substrate, the divided reference, common and data voltage driving line extensions are linearly connected to each other through resistors having different resistances.
Abstract:
A liquid crystal display includes: a flexible first substrate; a pixel electrode positioned on the first substrate and including an outer stem with a quadrangular shape, a crossed-shape stem including a transverse stem positioned inside the outer stem and a longitudinal stem crossing the transverse stem, and a plurality of minute branches extending from the outer stem and the crossed-shape stem; a flexible second substrate facing the first substrate; a common electrode positioned on the second substrate; and a liquid crystal layer including liquid crystal molecules interposed between the first substrate and the second substrate. An angle formed by minute branches of one sub-region of the pixel electrode positioned at second, third and fourth zones and the transverse stem is smaller than an angle formed by minute branches of three other sub-regions of the pixel electrode positioned at the second, third, and fourth zones and the transverse stem.
Abstract:
An optical modulation device includes a first plate, a second plate, and a liquid crystal layer. The first plate includes a first substrate, a lower plate electrode formed on the first substrate, a first electrode layer, and a first aligner. The first electrode layer and the first aligner are formed on the lower plate electrode. The second plate faces the first plate. The second plate includes an upper plate electrode and a second aligner. The liquid crystal layer is disposed between the first plate and the second plate. The liquid crystal layer includes a plurality of liquid crystal molecules. An alignment direction of the first aligner and an alignment direction of the second aligner are substantially parallel with each other.
Abstract:
A liquid crystal display device includes: a first substrate; a pixel electrode formed on the first substrate; a second substrate corresponding to the first substrate; and a common electrode formed on the second substrate. The pixel electrode includes: a central electrode, an outer portion connected to the central electrode and extending along an edge of the pixel electrode; and a fine branch portion extending from a side of the central electrode and spaced apart from the outer portion, wherein a cross-shaped opening is formed in the common electrode.
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other, a pixel electrode disposed on the first substrate, a storage electrode line which is close to edges of the pixel electrode and spaced apart from the pixel electrode, a common electrode disposed on the second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate, where the common electrode includes a first cutout having a cross shape, and the pixel electrode includes a second cutout which is close to at least one of the edges of the pixel electrode and disposed along the edge.
Abstract:
A liquid crystal display including a first substrate, a pixel electrode on the first substrate and including a first subpixel electrode and a second subpixel electrode separated from the first subpixel electrode, a second substrate facing the first substrate, a common electrode on the second substrate, and a liquid crystal layer between the first substrate and the second substrate, wherein the first subpixel electrode includes a first plate-shaped portion and first branch electrodes extending from the first plate-shaped portion, wherein the second subpixel electrode includes a second plate-shaped portion configured to enclose surroundings of the first branch electrode and second branch electrodes extending from the second plate-shaped portion, and wherein a difference between a first voltage applied to the first subpixel electrode and a common voltage applied to the common electrode is larger than a difference between a second voltage applied to the second subpixel electrode and the common voltage.