Abstract:
An organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a condensed cyclic compound represented by Formula 1. An organic light-emitting device including the organometallic compound according to the embodiments of the present disclosure may have high efficiency: M(L1)(L2). Formula 1
Abstract:
An organometallic compound represented by ML1L2 and an organic light-emitting device including the same, wherein M may be selected from copper (Cu), cobalt (Co), and nickel (Ni), L1 may be selected from ligands represented by Formula 2, and L2 may be a monovalent organic ligand: When the organometallic compound represented by ML1L2 is used as a dopant in the emission layer of an organic light-emitting device, the organic light-emitting device may have low driving voltage and high quantum efficiency.
Abstract:
An organic light-emitting device including a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode and including an emission layer. The organic layer may include a first compound represented by Formula 1 and a second compound represented by Formula 2: When the first compound represented by Formula 1 and the second compound represented by Formula 2 are included in the emission layer, the organic light-emitting device may have improved (e.g. increased) efficiency and lifespan characteristics.
Abstract:
An organic light-emitting device includes a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode, wherein the hole transport region includes a hole auxiliary layer and the electron transport region includes an electron auxiliary layer. The organic light-emitting device may have high efficiency and long life span characteristics.
Abstract:
An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2, wherein a case where the first compound is 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) is excluded:
Abstract:
An organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode, wherein the hole transport region includes a first compound, the emission layer includes a second compound and a third compound, and the electron transport region includes a fourth compound and a fifth compound. An organic light-emitting device according to the one or more embodiments may have high efficiency and long lifespan.
Abstract:
An organic light-emitting device includes a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode, wherein the hole transport region includes a hole auxiliary layer and the electron transport region includes an electron auxiliary layer. The organic light-emitting device may have high efficiency and long life span characteristics.
Abstract:
An organic light-emitting device including a first electrode; a second electrode; emission units stacked between the first electrode and the second electrode and including at least one emission layer; and charge generation layers between two adjacent emission units, the charge generation layers each including an n-type charge generation layer and p-type charge generation layer, a maximum emission wavelength of light emitted by at least one of the emission units is different from that of another emission unit, one n-type charge generation layer includes a first compound and a metal-containing material, the first compound being represented by Formula 1, the p-type charge generation layers include an amino group-free compound, at least one of the emission units further includes a hole transporting (HT)-emission auxiliary layer on a first electrode side thereof, and the HT-emission auxiliary layer includes at least one second compound, the second compound being represented by Formula 2:
Abstract:
An electronic apparatus that is presented has a substrate; an organic light-emitting device disposed on the substrate; and a thin film encapsulation portion sealing the organic light-emitting device and comprising at least one organic film. The organic film includes a cured product of a composition for forming an organic film, the composition comprising a curable material and an ultraviolet (UV) absorber. The curable material includes a (meth)acrylate compound. The organic light-emitting device includes a first electrode, a second electrode facing the first electrode, an emission layer between the first electrode and the second electrode, and a hole transport region between the first electrode and the emission layer. The emission layer includes a first compound represented by Formula 1, and the hole transport region includes a second compound represented by Formula 2:
Abstract:
An organic light-emitting device having low-driving voltage, improved efficiency, and long lifespan includes: a first electrode; a second electrode facing the first electrode; a first layer between the first electrode and the second electrode, the first layer including a first compound; a second layer between the first layer and the second electrode, the second layer including a second compound; and a third layer between the second layer and the second electrode, the third layer including a third compound; wherein the first compound does not include a nitrogen-containing heterocyclic group comprising *═N—*′ as a ring forming moiety, and wherein the first compound, the second compound, and the third compound each independently include at least one group selected from groups represented by Formulae A to C: