Abstract:
A stretchable display device includes a substrate having a plurality of islands spaced apart from each other, and a plurality of bridges connecting each of the plurality of islands. A plurality of display units is disposed above the plurality of islands, respectively. A plurality of metal wirings are electrically connected to each of the plurality of display units. The plurality of metal wirings are disposed above the plurality of bridges. Each of the plurality of bridges includes a first region curved convexly in a first direction on a plane, and a second region curved concavely in the first direction. The second region is connected to the first region. Each of the plurality of metal wirings has a first width, and each of the plurality of bridges have a second width that is greater than the first width.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a substrate, a plurality of sub-pixels over the substrate, wherein each of the plurality of sub-pixels includes an OLED layer comprising an OLED, wherein the OLED comprises a first electrode, a second electrode facing the first electrode, and an emitting layer therebetween, an encapsulation layer over the OLED layer and comprising at least one inorganic layer and at least one organic layer, a refractive layer comprising a first refractive index layer that is located over the encapsulation layer and has a recess and a second refractive index layer that is located over the first refractive index layer, wherein the second refractive index is greater than the first refractive index, and wherein an upper surface of the refractive layer is flat.
Abstract:
A stretchable display device includes a substrate having a plurality of islands spaced apart from each other, and a plurality of bridges connecting each of the plurality of islands. A plurality of display units is disposed above the plurality of islands, respectively. A plurality of metal wirings are electrically connected to each of the plurality of display units. The plurality of metal wirings are disposed above the plurality of bridges. Each of the plurality of bridges includes a first region curved convexly in a first direction on a plane, and a second region curved concavely in the first direction. The second region is connected to the first region. Each of the plurality of metal wirings has a first width, and each of the plurality of bridges have a second width that is greater than the first width.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes an OLED comprising a plurality of pixels configured to emit different colors of light and an encapsulation layer formed over the OLED. The OLED display also includes a color filter layer formed over the encapsulation layer, wherein the color filter layer comprises a plurality of color filters formed on regions corresponding to the pixels and a plurality of light block units respectively formed at least between the color filters. The OLED display further includes an edge lens unit formed over a lower surface of the color filter layer and formed between a lower surface of each of the color filters and a lower surface of each of the light block units.
Abstract:
A stretchable display device includes a substrate having a plurality of islands spaced apart from each other, and a plurality of bridges connecting each of the plurality of islands. A plurality of display units is disposed above the plurality of islands, respectively. A plurality of metal wirings are electrically connected to each of the plurality of display units. The plurality of metal wirings are disposed above the plurality of bridges. Each of the plurality of bridges includes a first region curved convexly in a first direction on a plane, and a second region curved concavely in the first direction. The second region is connected to the first region. Each of the plurality of metal wirings has a first width, and each of the plurality of bridges have a second width that is greater than the first width.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes an OLED comprising a plurality of pixels configured to emit different colors of light and an encapsulation layer formed over the OLED. The OLED display also includes a color filter layer formed over the encapsulation layer, wherein the color filter layer comprises a plurality of color filters formed on regions corresponding to the pixels and a plurality of light block units respectively formed at least between the color filters. The OLED display further includes an edge lens unit formed over a lower surface of the color filter layer and formed between a lower surface of each of the color filters and a lower surface of each of the light block units.
Abstract:
A device including a stretchable display and a method of controlling the device are disclosed. In one aspect, the device includes a stretchable display including a display unit formed on a front side of the stretchable display and configured to display images in a display area. The device also includes a support attached to a rear surface of the stretchable display and including a battery and a controller. The device further includes a sensor formed on the support. The support further includes a folding portion along which the support and stretchable display are configured to be folded and a bending portion along which the support and stretchable display are configured to be bent. The sensor is formed at a position corresponding to the folding portion or the bending portion and the sensor is configured to sense when the device is bent or folded.
Abstract:
Provided is a display apparatus including a display element including a light-emitter emitting light, a first refractive layer disposed over the display element, and a second refractive layer covering the first refractive layer, wherein an edge of the light-emitter includes a first light-emitting edge extending in a first direction, an edge of the first refractive layer includes a first refractive edge corresponding to the first light-emitting edge, wherein the first refractive edge includes a first portion forming a first angle with the first light-emitting edge on a plane, and a second portion forming a second angle greater than the first angle with the first light-emitting edge on the plane.
Abstract:
A display device having an improved light-extraction efficiency and a reduced color sense variation according to a viewing angle includes a pixel electrode on a substrate, an insulating layer defining an emission area via an opening that covers edges of the pixel electrode and exposes a center portion of the pixel electrode, a first light extraction pattern on the pixel electrode, the first light extraction pattern having a side surface inclined at a first angle, and a second light extraction pattern surrounding the first light extraction pattern on an outer portion of the first light extraction pattern, the second light extraction pattern having a side surface inclined at a second angle that is less than the first angle.
Abstract:
A display apparatus includes a pixel electrode, a pixel-defining layer covering edges of the pixel electrode, where an opening is defined through the pixel-defining layer to expose a central portion of the pixel electrode, and a light-condensing layer disposed over the pixel electrode to correspond to the opening. A first first slope angle of a first first side surface of the light-condensing layer with respect to a lower surface of the light-condensing layer is different from a second first slope angle of a second first side surface of the light-condensing layer with respect to the lower surface.