Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A display device includes a display panel including a plurality of pixels, a control unit configured to scale image data provided from the outside based on an image load factor and to output the scaled image data, and a data driver configured to supply data signals corresponding to the scaled image data to a plurality of data lines connected to the pixels, wherein the control unit includes a load factor calculating unit configured to calculate a load factor of the image data; and a data scaler configured to scale a gray level of the image data based on a scaling ratio corresponding to a load factor.
Abstract:
A display panel includes input power supply line coupled to a power supply at one or more edge portions of the display panel, and an output power supply line coupled to the input power supply line at a predetermined portion of the display panel. The input power supply line receives the power supply voltage, and the output power supply line receives the power supply voltage from the input power supply line. The power supply is coupled to the output power supply line at the one or more edge portions of the display panel, and receives the power supply voltage from the output power supply line to adjust a voltage level of the power supply voltage based on the power supply voltage from the output power supply line. The predetermined portion is at a location different from an edge of the display panel.
Abstract:
A display device includes a display panel, a dither table memory device, a dithering processor, and a display panel driver. The display panel includes a plurality of pixels. Dither tables are stored in the dither table memory device. The dithering processor selects a target dither table corresponding to a grayscale level of input data from among the plurality of dither tables and performs a dithering operation on the input data using the target dither table to generate dither data. The display panel driver drives the display panel based on the generated dither data.
Abstract:
A display panel module, organic light-emitting diode (OLED) display and method of driving the same are disclosed. In one aspect, the module includes a display panel divided into a first portion and a second portion and a plurality of scan and data lines divided into groups arranged in the first and second potions. The module further includes a first scan driver configured to sequentially apply scan signals to each of the first and second scan line groups. The first scan driver is further configured to substantially simultaneously apply the scan signals to corresponding scan lines of the first and second scan line groups. The module also includes a first data driver configured to output first data voltages to the first data line group and a second data driver configured to output second data voltages to the second data line group with the same timing as the first data driver.
Abstract:
An organic light emitting diode (OLED) display device includes: a display panel including a first through (2M)-th row pixel blocks; a data driver including a first data driving unit to provide N odd row data signals to (2K−1)-th row pixel blocks and a second data driving unit to provide N even row data signals to (2K)-th row pixel blocks; a scan driver including a first scan driving unit configured to provide (2K−1)-th scan signals to (2K−1)-th row pixel blocks and a second scan driving unit configured to provide (2K)-th scan signals to (2K)-th row pixel blocks. The first frame period includes an activation period and a vertical blank period. The first scan driving unit is configured to activate the (2K−1)-th scan signals sequentially in pulse form in an activation period.
Abstract:
A pixel circuit of an organic light emitting display device includes an emission unit, an emission control unit, a current supply unit, and a switch unit. The emission unit emits light based on an emission current. The emission control unit controls an emission operation of the emission unit based on a scan signal and a data signal. The current supply unit adjusts the emission current based on a current sinking operation performed based on an external constant current source, where the current supply unit is connected to the external constant current source. The switch unit controls an electrical connection operation between the emission control unit and the current supply unit.
Abstract:
An organic light emitting diode (OLED) display includes a display unit including first pixels emitting first color light, second pixels emitting second color light, and third pixels emitting third color light, and a power source voltage supplier supplying a driving voltage to the respective pixels of the display unit. The display further includes a first voltage wire transferring the driving voltage to the first pixels, a second voltage wire transferring the driving voltage to the second pixels, and a third voltage wire transferring the driving voltage to the third pixels. The first, second and third voltage wires being provided in a first layer. The display includes auxiliary voltage wires provided in a second layer different from the first layer. Contact areas between the first, second and third voltage wire and the auxiliary voltage wires are different from each other.
Abstract:
A display device includes a display panel, a dither table memory device, a dithering processor, and a display panel driver. The display panel includes a plurality of pixels. Dither tables are stored in the dither table memory device. The dithering processor selects a target dither table corresponding to a grayscale level of input data from among the plurality of dither tables and performs a dithering operation on the input data using the target dither table to generate dither data. The display panel driver drives the display panel based on the generated dither data.
Abstract:
Exemplary embodiments of the present invention relate to a pixel circuit comprising an organic light emitting diode (OLED), an RS trigger comprising a first terminal connected to a scan line, a second terminal connected to an enable line, and a third terminal connected to a data line, the RS trigger configured to generate an output signal according to an enable signal, a data signal, and a scan signal respectively received via the enable line, the data line, and the scan line, and a driving transistor comprising a first electrode connected to a first power source, a second electrode connected to an anode of the OLED, and a gate electrode connected to an output terminal of the RS trigger, the driver transistor configured to control a current flowing through the OLED in response to the output signal of the RS trigger.