Abstract:
A display device includes a display layer including pixels each including at least one transistor, a connection wiring electrically connected to the at least one transistor and exposed to a lower surface of the display layer through a first contact hole in the display layer, a base member disposed under the display layer and including a first hole exposing the connection wiring exposed to the lower surface of the display layer, a first lower protective layer disposed on a lower surface of the base member and including a second hole overlapping the first hole, a pad portion disposed on a lower surface of the first lower protective layer, and a lead line disposed on the lower surface of the first lower protective layer and electrically connecting the pad portion and the connection wiring. A tiled display device includes multiple display devices.
Abstract:
A tiled display includes a first display device comprising a first display area and a first pad area having grooves, and a second display device comprising a second display area and a second pad area overlapping the second display area, the second pad area having protrusions, wherein the protrusions are inserted into the grooves to connect the first pad area with the second pad area.
Abstract:
A display device includes: a display member including a first region, a second region, and a third region defined between the first region and the second region; a first coated layer disposed on a first surface of the first region of the display member; and a second coated layer disposed on a first surface of the second region of the display member, where a first modulus of the first coated layer is smaller than a second modulus of the second coated layer.
Abstract:
A display device includes: a substrate having a display area and a non-display area disposed around the display area; an organic light emitting diode disposed on the substrate in the display area; and a spacer disposed on the substrate in the non-display area, the substrate includes a first insulating film and a second insulating film disposed on the first insulating film, the substrate includes a groove disposed in an edge area farther from the organic light emitting diode than the spacer in the non-display area, and the groove is formed in at least one of the first insulating film and the second insulating film.
Abstract:
A display device includes a substrate, a thin film transistor disposed on the substrate, and a pixel electrode electrically connected to the thin film transistor. The display device further includes a roof layer overlapping the pixel electrode with a cavity being positioned between the roof layer and the pixel electrode, the cavity having an opening. The display device further includes an alignment layer and a liquid crystal layer disposed inside the cavity. The display device further includes a plurality of bead members disposed at the opening and including a first bead member, a first portion of the first bead member being disposed inside the cavity, a second portion of the first bead member being disposed outside the cavity. The display device further includes an encapsulation layer overlapping the roof layer and overlapping the plurality of bead members.
Abstract:
A display device includes a lower display panel, an upper display panel facing the lower display panel, a metal oxide layer surrounding outermost surfaces of the upper display panel and the lower display panel, and a barrier layer surrounding the metal oxide layer. The barrier layer includes a self-assembled monolayer.
Abstract:
A manufacturing method of a liquid crystal display includes: providing a thin film transistor on a substrate; providing a pixel electrode connected to the thin film transistor; providing a microcavity layer including a liquid crystal material on the pixel electrode; providing a supporting member layer on the microcavity layer; patterning the supporting member layer to form a plurality of recess portions therein; and providing a plurality of touch signal lines for transmitting a touch signal in the plurality of recess portions.
Abstract:
An inkjet printing system includes: an inkjet head unit including a nozzle for discharging ink, a driving unit for generating and outputting a driving voltage for discharging the ink from the nozzle, a first impedance adjusting unit disposed between an input terminal of the inkjet head unit and an output terminal of the driving unit and including a diode, and a self-sensing circuit unit that is connected to the input terminal of the inkjet head unit and receives a self-sensing voltage from the nozzle to determine whether the nozzle is operating normally.
Abstract:
A display device includes a display layer comprising pixels, each of the pixels having at least one thin-film transistor, a connection line electrically connected to the at least one thin-film transistor, the connection line being exposed on a lower surface of the display layer through a first contact hole formed in the display layer, a barrier layer disposed on the lower surface of the display layer and including a second contact hole connected to the first contact hole, a lead line disposed on a lower surface of the barrier layer and electrically connected to the connection line through the second contact hole, a pad part disposed on the lower surface of the barrier layer and electrically connected to the lead line, and a lower film overlapping the lower surface of the barrier layer and the lead line.
Abstract:
A display panel according to an embodiment of the present invention includes an interlayer insulating layer, a pixel layer including a lower insulating layer between the interlayer insulating layer and a base substrate, an encapsulation layer including a first inorganic layer, and a first blocking groove in the display area, adjacent to a module hole, passing through the interlayer insulating layer to expose a portion of a top surface of the lower insulating layer, and the first blocking groove is surrounded by the first inorganic layer to contact the first inorganic layer.