Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an electronic device for displaying a virtual keyboard are provided. The method includes detecting a touch on a virtual keyboard, determining whether the detected touch moves from a first area within the virtual keyboard to another area, and changing and displaying, when the touch moves from the first area to the other area, the virtual keyboard according to a movement direction of the touch.
Abstract:
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. A method for communicating with user equipment (UE) by a base station is disclosed. The method comprises the steps of: identifying a type of one or more services required by the UE; notifying the UE of information on a configuration of a medium access control (MAC) layer and a physical (PHY) layer configured according to the identified type of one or more services; and communicating with the UE on the basis of the information on the configuration of the MAC layer and the PHY layer configured according to the identified type of one or more services.
Abstract:
A wireless power transmitter according to various embodiments of the present invention can comprise a plurality of patch antennas, a coil, and a processor. The processor can control such that an electronic device is detected, the plurality of patch antennas and/or the coil is selected as a power transmission circuit for transmitting power for charging the electronic device, and power is transmitted by means of the plurality of patch antennas and/or the coil in accordance with the selection.
Abstract:
A power amplifier may comprise: an element for amplifying an electrical signal received through an input terminal, and outputting the amplified electrical signal through an output terminal; a first impedance adjustment circuit connected to the input terminal of the element and adjusting impedance with respect to a frequency of a fundamental component at the input terminal; a second impedance adjustment circuit connected to the input terminal of the element and adjusting impedance with respect to a frequency of a multiplied harmonic component at the input terminal; a third impedance adjustment circuit connected to the output terminal of the element and adjusting impedance with respect to the frequency of the fundamental component at the output terminal; a fourth impedance adjustment circuit connected to the output terminal of the element and adjusting impedance with respect to the frequency of the multiplied harmonic component at the output terminal; a first frequency separation circuit which prevents an impedance change by the first impedance adjustment circuit with respect to the frequency of the multiplied harmonic component at the input terminal, and prevents an impedance change by the second impedance adjustment circuit with respect to the frequency of the fundamental component at the input terminal; and a second frequency separation circuit which prevents an impedance change by the third impedance adjustment circuit with respect to the frequency of the multiplied harmonic component at the output terminal, and prevents an impedance change by the fourth impedance adjustment circuit with respect to the frequency of the fundamental component at the output terminal.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that is to support higher data transmission rates after 4G communication systems such as LTE. A method, by a MeNB, for switching a SeNB communicating with a UE in a wireless communication system, provided in an embodiment of the present disclosure, includes receiving, from the UE, a measurement report (MR) of the at least two SeNB neighboring with the UE, determining whether predetermined switch criteria are satisfied based on the MR, and transmitting, to the UE and a first SeNB or a second SeNB, a switch message indicating switching of an SeNB cooperating with the MeNB for communication with the UE from the first SeNB to the second SeNB, based on whether the switch criteria are satisfied.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The purpose of the present disclosure is to discover a small cell in a wireless communication system. An operation of a terminal in the wireless communication system includes receiving a first signal for informing of existence of a small cell according to a first measurement period and attempting to detect the first signal and a second signal for informing of a service coverage of the small cell according to a second measurement period after detecting the first signal. In addition, the present disclosure also includes embodiments other than the embodiment described above.
Abstract:
Apparatuses, systems, and methods of wireless power transmission/reception are described. In one wireless power transmission/reception device, a planar resonator capable of generating magnetic fields has one or more ferrite members mounted thereon such that the magnetic fields generated by the planar resonator have an overall direction substantially tilted or parallel to its opening/face, i.e., to the plane of the planar resonator. In a wireless power reception device, the planar resonator generates magnetic fields and an induced current when being resonated by external magnetic fields; in a wireless power transmission device, the planar resonator generates magnetic fields when being supplied with power.
Abstract:
The present disclosure relates 5G or pre-5G communication systems for supporting higher data transmission rate than those by LTE or other post-4G communication systems. According to an embodiment of the present disclosure, a method for allocating a resource in a communication system includes determining a beam to be used for data communication between a UE and the base station based on beam feedback information from the UE. The method also includes releasing resource allocation for a beam used previously depending on whether the determined beam is changed from the previously used beam, allocating a resource for the determined beam, and transmitting information related to the resource allocation for the determined beam to the UE.
Abstract:
A method for transmitting a status report in a communication system based on multiple Radio Access Technologies (RATs) is provided. The method includes, when missing sequence numbers are detected from sequence numbers of packets stored in a reception buffer, identifying whether there are one or more sequence numbers which have not been received due to a transmission delay time difference between the multiple RATs in the missing sequence numbers, and when there are one or more sequence numbers in the missing sequence numbers, delaying transmission of the status report.