Abstract:
A method, apparatus, and computer-readable medium at a transmitting user equipment (UE) in a distributed cellular vehicle-to-everything environment are disclosed to determine a schedule for transmissions on subchannels of multiple frequencies based on a set of UE-specific, dynamic, and performance related metrics or criteria. The metrics may include an estimated number of users on a subchannel, a best-bandwidth fit, channel loading conditions, transmission range, and quality requirements of an application, among others. Such a schedule for transmissions on subchannels of multiple frequencies may result in either an improved capacity utilization, an improved communication quality, or both.
Abstract:
Methods, systems, and devices are described for improving discontinuous reception (DRX) periods using enhanced physical HARQ indicator channel (PHICH) decoding. A user equipment (UE) may determine that an uplink (UL) retransmission (ReTx) is unnecessary based on the content of the original UL transmission. For example, the transmission may include media access control (MAC) layer padding rather than relevant application layer data. The UE may then identify a DRX sleep period that includes the subframe where the ReTx would take place. In some cases, the DRX sleep period may include a subframe where the UE would otherwise receive an acknowledgement message (AM) from a base station. The UE may then enter a DRX sleep state. In another example, the DRX sleep period is based on the content of a received AM. If the UE receives an ACK, the UL ReTx may be unnecessary.
Abstract:
Disclosed are methods and apparatus for performing a better PLMN (BPLMN) search during connected mode DRX. In one aspect, a user equipment (UE) detects a trigger to begin a BPLMN search while in connected mode discontinuous reception (CDRX); determines whether it is configured for a manual BPLMN search; determine whether the CDRX duration is greater than or equal to the minimum amount of time required to perform the manual BPLMN search; and when determined that the CDRX duration is greater than or equal to the minimum amount of time required for the BPLMN search, performs the manual BPLMN search while in the CDRX.
Abstract:
Methods, systems, and devices are described for managing power of a user equipment (UE). A UE modem may determine the state of charge of the battery to determine that the battery is in one of two or more charge state levels, and may invoke one or more modem power saving modes based on the charge state level. Power saving modes may include, for example, reducing a number of available receive chains in a UE, initiating a time delay between one or more frequency scan requests performed by the UE, reducing a rate of neighbor search requests performed by the UE, providing a buffer status report (BSR) parameter that indicates a reduced amount of buffer data relative to an actual amount of buffer data for the UE, and/or adjusting a maximum transmit power level for an uplink channel.
Abstract:
Techniques for optimized HARQ recombining are provided. In one exemplary embodiment, a method for wireless communication comprises receiving a broadcast message to determine a timing of a transmission window, receiving at least one transmission within the transmission window, and determining whether the at least one transmission is successfully decoded. The method further comprises instructing a lower protocol layer to ignore remaining transmissions within the transmission window upon a determination that the at least one transmission is successfully decoded, wherein the remaining transmissions and the at least one transmission comprise duplicate copies of a message segment.