Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing an unmanned aerial vehicle (UAV). In various embodiments, the UAV may charge an onboard battery while docked at a docking terminal of a charging station. The UAV may receive a message from the charging station with an instruction to undock from the docking terminal. The UAV may undock from the docking terminal before charging of the onboard battery is complete in response to receiving the message from the charging station with the instruction to undock.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing a vehicle charging station having a docking terminal. In various embodiments, a priority of a first autonomous vehicle and a second autonomous vehicle may be determined for using the docking terminal when a docking request is received from the second autonomous vehicle while the first autonomous vehicle occupies the docking terminal. In some embodiments, the priorities of the first and second autonomous vehicles may be based on an available power level of each of the first and second autonomous vehicles. The first autonomous vehicle may be instructed to undock from the docking terminal in response to determining that the second autonomous vehicle has a higher priority.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing an unmanned aerial vehicle (UAV) charging station having a docking terminal. In various embodiments, a priority of a first UAV and a second UAV may be determined for using the docking terminal when a docking request is received from the second UAV while the first UAV occupies the docking terminal. In some embodiments, the priorities of the first and second UAVs may be based on an available power level of each of the first and second UAVs. The first UAV may be instructed to undock from the docking terminal in response to determining that the second UAV has a higher priority.
Abstract:
The disclosure generally relates to dynamic cell reselection to improve device-to-device (D2D) communications where two or more D2D peers are camped onto different cells and one or more D2D peers are located in an overlap region between the cells. For example, in various embodiments, the D2D peers may exchange one or more communication parameters over the (inter-cell) D2D connection and detect that the D2D peers are camped on different base stations (i.e., attached to different cells) based on the exchanged communication parameters. The D2D peer(s) located in the cell overlap region may then obtain measurements on the neighbor cell and a forced cell reselection may be triggered at the appropriate D2D peer(s) located in the cell overlap region such that the D2D peers are camped on the same base station, thereby converting the inter-cell D2D connection into an intra-cell D2D connection that can be more easily maintained.
Abstract:
The disclosure generally relates to synchronizing application account data using out-of-band device-to-device (D2D) communication between peer wireless devices. More particularly, a first device may generate a local unique expression that includes a name, one or more user credentials, and a last update time associated with an application registered for a D2D-based application synchronization service. In response to detecting one or more external unique expressions from one or more peer devices in proximity that match the name and the user credentials associated with the registered application, the first device may then identify, among the one or more peer devices, an update device associated with an external unique expression having a last update time more recent than the last update time associated with the local unique expression and request an update to synchronize the application account data associated with the registered application from the update device over an out-of-band D2D connection.
Abstract:
Methods, systems and devices are provided for selecting one or more target devices for device-to-device (D2D) communication with a device. A device processor may determine whether a battery power level of the device is below a threshold battery power level. The device processor may establish a received power level threshold in response to determining that the battery power level of the device is below a threshold power battery level. The device processor may determine whether a received power level of a signal from target devices for D2D communication is above the received power level threshold. In response to determining that the received power level from a target device is above the received power level threshold, the device processor may permit D2D communication with that target device.