Abstract:
The disclosure relates to collaborative intelligence and decision-making in an Internet of Things (IoT) device group. In particular, various IoT devices in the group may be interdependent, whereby a decision that one IoT device plans may impact other IoT devices in the group. Accordingly, in response to an IoT device planning a certain decision (e.g., to transition state or initiate another action), the IoT devices in the group may collaborate using distributed intelligence prior to taking action on the planned decision. For example, a recommendation request may be sent to other IoT devices in the group, which may then analyze relationships within the group to assess potential impacts associated with the planned decision and respond to approve or disapprove the planned decision. Based on the responses received from the other IoT devices, the IoT device may then determine whether to take action on the planned decision.
Abstract:
In an embodiment, a server registers each of the plurality of client applications on the same client device. The server receives a given registration request message from the client device that includes a request for renewing a registration for a first of the plurality of client applications with the server, and the server renews the first client application's registration in response to the given registration request message. The server also determines, in response to the given registration request message, whether to preemptively renew registrations for one or more other client applications from the plurality of client applications. The server selectively renews the registrations for the one or more other client applications based on the determination.
Abstract:
The various embodiments include methods implemented by a first mobile device for updating presence information for a second mobile device stored in memory of the first mobile device when the first mobile device determines that a calculated update quantification exceeds a particular threshold value. In an embodiment, the first mobile device may select one channel from a plurality of available communication channels in response to determining that the update quantification exceeds a threshold value. In a further embodiment, the first mobile device may update the presence information of the second mobile device via that selected channel.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with establishment of packet based communications through use of circuit switched signaling messages. In one example, a communications device is equipped to receive, by a circuit switched (CS) interface associated with a target device, a first CS signaling message from an originator device, determine whether to initiate the packet data session in response to receipt of the first CS signaling message, and establishing, using a packet switched (PS) interface associated with the target device, an internet protocol (IP) communication session in response to communication of an IP connection request between the originator device and the target device upon a determination to initiate the packet data session. In an aspect, the first CS signaling message may include an indication prompting the target device to initiate a packet data session.
Abstract:
Methods and apparatuses for reducing time to receive a call failure indication in a wireless communications system are provided. A request to initiate a call with a target user equipment (UE) is received from an originating UE. A call setup message that corresponds to the request is sent to a network node, and an internet control message protocol (ICMP) message indicative of the network node lacking a dedicated bearer to a radio access network that corresponds to the target UE can be received in response to the request. Based on the ICMP message, a status failure message is sent to the originating UE indicating failure of the call.
Abstract:
In various embodiments, a mobile device and/or the presence-aware applications running on the device may be configured to support multiple user profiles. For instance, multiple users with access to the same mobile device may each create a user profile and login credentials on that device, and each user may take turns using the mobile device. The mobile device may also allow multiple users to access the mobile device simultaneously. In such embodiments, the mobile device processor executing the presence module and/or presence engine may be configured to associate a particular user profile with a request for updated presence information and determine whether to update the presence information based at least in part on the that user profile.
Abstract:
Systems, methods, and devices of the various embodiments enable dynamically creating and joining group communication sessions without (i.e., “free of”) operator-controlled or operator-assisted provisioning. By encoding group call provisioning information in a bar code, such as a Quick Response Code (“QR code”), that participants can scan using their mobile communication devices (e.g., smart phones), a group call may be created and provisioned on communication devices. The QR code encodes the information needed to initiate and/or join a group communication session maintained by a group communication server.
Abstract:
Exemplary techniques for sending data packages that can include geographic information during group communication sessions between wireless telecommunication devices, such as push-to-talk communication sessions, are disclosed. In an embodiment the data packages are wirelessly transmitted by a communication device to a group communication server and then sent to other group members.
Abstract:
A system, method, and wireless communication device that provide a mobile user with selective access to information based on a predefined trigger such as a user's vicinity. In an embodiment, selected information from a first wireless communication device of a communication group may be associated with a geographic location and stored. A portion of the information may be selectively transmitted to a second wireless communication device of the communication group when the second wireless communication device is determined to be proximate to the geographic location associated with the information. In one embodiment, the second wireless communication device may receive the information automatically based on trigger settings.
Abstract:
A radio frequency signal transfer anomaly notification method includes: determining, at a first roadside unit, presence of an anomaly of radio frequency signal transfer within a wireless communication range of the first roadside unit; determining a type of radio frequency signal transfer of the anomaly; and transmitting, from the first roadside unit to another entity, an anomaly indication indicative of the anomaly of radio frequency signal transfer and the type of radio frequency signal transfer of the anomaly.