Abstract:
A method, computer readable medium, and system are disclosed to generate coordinates of landmarks within images. The landmark locations may be identified on an image of a human face and used for emotion recognition, face identity verification, eye gaze tracking, pose estimation, etc. A transform is applied to input image data to produce transformed input image data. The transform is also applied to predicted coordinates for landmarks of the input image data to produce transformed predicted coordinates. A neural network model processes the transformed input image data to generate additional landmarks of the transformed input image data and additional predicted coordinates for each one of the additional landmarks. Parameters of the neural network model are updated to reduce differences between the transformed predicted coordinates and the additional predicted coordinates.
Abstract:
One embodiment of the present invention sets forth a technique for estimating a head pose of a user. The technique includes acquiring depth data associated with a head of the user and initializing each particle included in a set of particles with a different candidate head pose. The technique further includes performing one or more optimization passes that include performing at least one iterative closest point (ICP) iteration for each particle and performing at least one particle swarm optimization (PSO) iteration. Each ICP iteration includes rendering the three-dimensional reference model based on the candidate head pose associated with the particle and comparing the three-dimensional reference model to the depth data. Each PSO iteration comprises updating a global best head pose associated with the set of particles and modifying at least one candidate head pose. The technique further includes modifying a shape of the three-dimensional reference model based on depth data.
Abstract:
A system, method and computer program product are provided for generating one or more values for a signal patch using neighboring patches collected based on a distance dynamically computed from a noise distribution of the signal patch. In use, a reference patch is identified from a signal, and a reference distance is computed based on a noise distribution in the reference patch. Neighbor patches are then collected from the signal based on the computed reference distance from the reference patch. Further, the collected neighbor patches are processed with the reference patch to generate one or more values for the reference patch.
Abstract:
A method, computer readable medium, and system are disclosed for generating mixed-primary data for display. The method includes the steps of receiving a source image that includes a plurality of pixels, dividing the source image into a plurality of blocks, analyzing the source image based on an image decomposition algorithm, encoding chroma information and modulation information to generate a video signal, and transmitting the video signal to a mixed-primary display. The chroma information and modulation information correspond with two or more mixed-primary color components and are generated by the image decomposition algorithm to minimize error between a reproduced image and the source image. The two or more mixed-primary colors selected for each block of the source image are not limited to any particular set of colors and each mixed-primary color component may be selected from any color capable of being reproduced by the mixed-primary display.
Abstract:
A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.
Abstract:
In order to determine accurate three-dimensional (3D) models for objects within a video, the objects are first identified and tracked within the video, and a pose and shape are estimated for these tracked objects. A translation and global orientation are removed from the tracked objects to determine local motion for the objects, and motion infilling is performed to fill in any missing portions for the object within the video. A global trajectory is then determined for the objects within the video, and the infilled motion and global trajectory are then used to determine infilled global motion for the object within the video. This enables the accurate depiction of each object as a 3D pose sequence for that model that accounts for occlusions and global factors within the video.
Abstract:
Systems and methods are disclosed that improve performance of synthesized motion generated by a diffusion neural network model. A physics-guided motion diffusion model incorporates physical constraints into the diffusion process to model the complex dynamics induced by forces and contact. Specifically, a physics-based motion projection module uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically plausible motion. The projected motion is further used in the next diffusion iteration to guide the denoising diffusion process. The use of physical constraints in the physics-guided motion diffusion model iteratively pulls the motion toward a physically-plausible space, reducing artifacts such as floating, foot sliding, and ground penetration.
Abstract:
In various examples, historical trajectory information of objects in an environment may be tracked by an ego-vehicle and encoded into a state feature. The encoded state features for each of the objects observed by the ego-vehicle may be used—e.g., by a bi-directional long short-term memory (LSTM) network—to encode a spatial feature. The encoded spatial feature and the encoded state feature for an object may be used to predict lateral and/or longitudinal maneuvers for the object, and the combination of this information may be used to determine future locations of the object. The future locations may be used by the ego-vehicle to determine a path through the environment, or may be used by a simulation system to control virtual objects—according to trajectories determined from the future locations—through a simulation environment.
Abstract:
Transferring pose to three-dimensional characters is a common computer graphics task that typically involves transferring the pose of a reference avatar to a (stylized) three-dimensional character. Since three-dimensional characters are created by professional artists through imagination and exaggeration, and therefore, unlike human or animal avatars, have distinct shape and features, matching the pose of a three-dimensional character to that of a reference avatar generally requires manually creating shape information for the three-dimensional character that is required for pose transfer. The present disclosure provides for the automated transfer of a reference pose to a three-dimensional character, based specifically on a learned shape code for the three-dimensional character.
Abstract:
A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.