Abstract:
As the polarizing fiber of the present invention, the cross sectional form perpendicular to the longitudinal direction has a sea-island structure, and the cross sectional form is continuously made up in the longitudinal direction. A resin (sea component) that constitutes the sea region of the sea-island structure comprises a dichroic dye, and a resin (island component) that constitutes the island regions of the sea-island structure is a transparent resin. The polarizing fiber of the present invention may be used as a forming material of a polarizer, for example. By using the above polarizing fiber, a polarizer wherein unevenness of the transmittance is small and cracks are less generated may be formed.
Abstract:
Provided are a photon up-conversion film, which is capable, of high-efficiency up-conversion even in air and even when low-intensity light is used, and a simple method of producing the film. The photon up-conversion film according to one embodiment of the present invention includes: a matrix including a resin; and a pore portion, wherein the photon up-conversion film includes at least a sensitizing component capable of absorbing light in a first wavelength region λ1, and a light-emitting component capable of radiating light in a second wavelength region λ2 including wavelengths shorter than those of the first wavelength region λ1, and wherein the sensitizing component and the light-emitting component are present at an interface between the matrix and the pore portion.
Abstract:
An optical stack includes a liquid crystal panel with a color filter array. The liquid crystal panel has a filter side closest to the color filter array and a non-filter side opposite the filter side. An absorbing polarizer is laminated directly to the filter side of the liquid crystal panel, and a reflective polarizer laminated directly to the absorbing polarizer.
Abstract:
A pressure-sensitive adhesive layer-attached polarizing film of the invention includes: a polarizing film; and a pressure-sensitive adhesive layer provided on the polarizing film, wherein the polarizing film includes a polarizer and a transparent protective film provided on only one side of the polarizer, the pressure-sensitive adhesive layer is provided on a side of the polarizer where the transparent protective film is absent, and the pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive composition containing a (meth)acryl-based polymer (A) and an alkali metal salt (B). The pressure-sensitive adhesive layer-attached polarizing film has a pressure-sensitive adhesive layer with an antistatic function and satisfactory durability and whose optical properties are less likely to be degraded.
Abstract:
A pressure-sensitive adhesive optical film of the invention comprises an optical film and a pressure-sensitive adhesive layer provided on the optical film, wherein the pressure-sensitive adhesive layer has a thickness (μm) standard deviation of 0.12 μm or less. The pressure-sensitive adhesive optical film makes it possible to reduce the problem of visible unevenness caused by a pressure-sensitive adhesive layer.
Abstract:
There is provided a method of producing a polarizing plate by which a polarizing film can be produced without the occurrence of a problem such as peeling between a resin substrate and a polyvinyl alcohol-based resin layer, and after the production of the polarizing film, the polarizing film and the resin substrate can be peeled without limitations on a peel direction and a peel angle, and a polarizing plate excellent in external appearance can be obtained. A method of producing a polarizing plate according to an embodiment of the present invention includes: applying an application liquid containing a polyvinyl alcohol-based resin and a surfactant onto a resin substrate to produce a laminate in which a polyvinyl alcohol-based resin layer is formed on the resin substrate; stretching and dyeing the polyvinyl alcohol-based resin layer formed on the resin substrate to produce a polarizing film; laminating an optical functional film on a polarizing film side of the laminate to produce an optical functional film laminate; and peeling the resin substrate from the optical functional film laminate. A content of the surfactant in the application liquid is less than 1 part by weight with respect to 100 parts by weight of the polyvinyl alcohol-based resin.
Abstract:
A laminate according to an embodiment of the present invention includes: a resin substrate; a polyvinyl alcohol-based resin layer formed on one side of the resin substrate; and an antistatic layer formed on another side of the resin substrate and comprising a binder resin and a conductive material. The binder resin includes a polyurethane-based resin; the antistatic layer has an arithmetic average surface roughness Ra of 10 nm or more; and the conductive material includes a conductive polymer.
Abstract:
An optical deflection tape (10) attachable on a lightguide (20) is provided, comprising a substrate (10A) and at least one pattern (11) formed with a number of periodic pattern features (12) embedded in the substrate (10A) and configured as optically functional cavities (12) filled with a material having a refractive index different from the refractive index of the material of the substrate (10A) surrounding the cavity (12). The pattern (11) is configured to adjust direction of light received thereto such, that light incident at the pattern (11) is deflected to acquire a propagation path through a lightguide medium (20) via a series of total internal reflections and, by virtue of said at least one pattern (11), the optical deflection tape (10) is configured to control distribution of light propagating through the lightguide (20). A method for manufacturing the tape (10) and related uses are further provided.
Abstract:
A method of producing a polarizing plate according to an embodiment includes: applying an application liquid containing a polyvinyl alcohol-based resin and a surfactant onto a resin substrate to produce a laminate in which a polyvinyl alcohol-based resin layer is formed on the resin substrate; stretching and dyeing the polyvinyl alcohol-based resin layer formed on the resin substrate to produce a polarizing film; laminating an optical functional film on a polarizing film side of the laminate to produce an optical functional film laminate; and peeling the resin substrate from the optical functional film laminate. A content of the surfactant in the application liquid is less than 1 part by weight with respect to 100 parts by weight of the polyvinyl alcohol-based resin.
Abstract:
The present invention pertains to a one-side-protected polarizing film having a transparent protective film on only one surface of a polarizer, wherein: the polarizer contains a polyvinyl alcohol-based resin, has a thickness of 10 μm or less, and is designed to have a single-body transmittance T and a polarization degree P representing optical properties satisfying the condition of the following formula: P>−(100.929T−42.4−1)×100 (provided that T