Abstract:
Various solutions with respect to multi-transmission and receiving points (TRP) and multi-panel transmission in wireless communications are described. A processor of a user equipment (UE) associated with a single media access control (MAC) entity receives signaling from a plurality of network nodes of a wireless network. The processor generates at least one feedback responsive to receiving the signaling. The processor transmits the at least one feedback to at least one network node of the plurality of network nodes.
Abstract:
Various solutions with respect to codebook-based uplink transmission in wireless communications are described. A user equipment (UE) receives a first signal from a network node of a wireless network, with the first signal selecting one or more codewords or a codebook from a plurality of different codebooks within a master codebook as allowed precoders at transmission ranks. The UE also receives a second signal from the network node, with the second signal selecting a precoder among the allowed precoders for uplink (UL) transmission. The UE then processes data using the selected precoder and performs an UL transmission of the processed data to the network node.
Abstract:
Various solutions with respect to codebook-based uplink transmission in wireless communications are described. A user equipment (UE) constructs a precoder to be used to wirelessly communicate with a network node of a wireless network. The UE then performs an uplink (UL) transmission to the network node using the precoder via one or more of a plurality of antennas of the UE.
Abstract:
Techniques and examples pertaining to codeword mapping in New Radio (NR) and interleaver design for NR are described. A processor of an apparatus receives, via a transceiver of the apparatus, a Physical Downlink Shared Channel (PDSCH) transmission from a network node of a wireless network. The processor maps one or more codeblocks of a codeword in the PDSCH transmission to a spatial layer group which is a subset of a plurality of spatial layers. The processor also performs receive processing for one or more codeblocks in the PDSCH transmission including by performing de-interleaving on a result from a channel interleaver or from an intra-codeblock interleaver that performs pseudo-random interleaving on systematic bits and parity bits of the one or more codeblocks and channel decoding. The processor transmits, via the transceiver, to the network node a feedback concerning the one or more codeblock and reporting a result of the channel estimation.
Abstract:
A method of modulating and demodulating superposed signals for MUST scheme is proposed. A transmitter takes bit sequences intended for multiple receivers under MUST scheme to go through a “bit sequence to constellation points” mapper before entering the modulators to satisfy the Gray coding rule and to achieve high demodulation performance for the receivers. In a first method, each bit sequence is assigned for each constellation point on the constellation map to satisfy one or more conditions under different power split factors. In a second method, the constellation map is divided into sub-regions according to the clustering of the constellation points for bit sequence assignment. A near-UE may use an ML receiver for demodulation and decoding the superposed signal. A far-UE may use an ML receiver or an MMSE receiver for demodulation and decoding the superposed signal.
Abstract:
A method of interference cancellation is proposed. A serving base station transmits a first configuration information to a UE, the first configuration information is related to a desired signal of a data transmission from a serving cell to the UE. The serving base station determines a second configuration information related to an interference signal of a data transmission from a neighboring cell to the UE. The second configuration information comprises a resource allocation type and a basic resource allocation unit of the interference signal. The serving base station transmits the second configuration information to the UE such that the UE can cancel the data transmission from the neighboring cell.
Abstract:
A method of interference cancellation is proposed. A UE obtains configuration information of a data transmission from a neighboring cell via an interference channel in a mobile communication network. The UE receives radio signals on a set of data resource elements as determined based on the obtained configuration information. The UE then estimates the interference channel corresponding to the data transmission from the neighboring cell based on the received radio signals on the set of data resource elements. Finally, the UE cancels the data transmission from the neighboring cell based on the estimated interference channel.
Abstract:
A new air interface that is interference cancellation friendly is proposed. In one novel aspect, a novel code rate assignment with rate splitting is proposed. In one embodiment, a base station decomposes a codeword {x1} into two codewords {x1a} and {x1b}. The two codewords are applied with different code rates and/or modulation orders. More specifically, the code rate or modulation order of codeword {x1a} is set appropriately so that a victim UE can decode and cancel {1a} under the channel quality of the victim UE. Typically, the channel quality of a victim UE is poorer than the channel quality of the intended UE. As a result, the MCS for {1a} can be lower than the MCS for {1b} such that the victim UE is able to apply CWIC to decode and cancel {1a}.
Abstract:
Methods of enabling multiuser superposition transmission (MUST) in LTE systems are proposed. MUST operation allows simultaneous transmission for multiple co-channel users on the same time-frequency resources. A higher-layer signaling is used for configuring a UE to enable MUST. When a UE is configured by higher layer to enable MUST, the UE will monitor physical-layer control signaling carrying scheduling information and MUST-related information. Depending on whether MUST exists in each subframe, the UE derives the power allocation between the UE and its co-channel UE on allocated resource blocks. The UE also derives the power allocation based on whether it is configured for CRS-based transmission mode or DMRS-based transmission mode.
Abstract:
A method of performing downlink multiuser superposition transmission (MUST) with enhanced channel state information (CSI) feedback is proposed. When a user equipment (UE) reports CQI/SINR feedback for RI=RANK-2, the UE also reports a single beam CQI/SINR feedback for RI=RANK1. As a result, the scheduling base station can calculate the actual SINRs based on different MUST scenarios and thereby determining appropriate modulation and coding scheme (MCS) for the UE. Furthermore, if the granularity of the CQI table cannot reflect the high values of the single beam SINR, then a predefined scaling factor (0