Abstract:
A method of a user equipment (UE) operating in a wireless communication system and the user equipment are discussed. The method includes receiving a timing advance command for indicating a change of uplink timing relative to a current uplink timing in a subframe; and when uplink transmissions in a subframe n and a subframe n+1 are overlapped due to the timing advance command, transmitting the subframe n completely.
Abstract:
An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
Abstract:
A method of transmitting pilot signals in a system which performs communication using two or more earners comprises transmitting first pilots and second pilots from at least one user equipment to a base station, the first and second pilots, which are transmitted from the at least one user equipment, being multiplexed by code division multiplexing, and the first and second pilots, which are transmitted from a specific user equipment, having different transmission powers, and transmitting data from the at least one user equipment to the base station depending on the first pilots and the second pilots. Since many UEs can transmit CQ pilots, exact channel estimation can be performed and thus communication efficiency can be improved.
Abstract:
An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
Abstract:
A method of allocating radio resources in a multi-carrier system is disclosed, by which a signaling message can be efficiently transmitted according to necessity of a user equipment. In a user equipment of a mobile communication system transceiving data using a plurality of subcarriers, the present invention includes the steps of if the signaling message to be transmitted is generated in the user equipment, generating a preamble sequence according to a user equipment identifier to identify the user equipment, transmitting a preamble signal including the preamble sequence and the signaling message to a base station, and receiving an acknowledgement signal for the preamble signal generated according to the user equipment identifier.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
According to one embodiment, a user equipment for use in a mobile communication system is configured to: receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
Abstract translation:根据一个实施例,用于移动通信系统的用户设备被配置为:经由控制信道接收包括第一场和第二场的控制信息,所述第一场指示N(N≥2)个资源块组 (RBG)集合,并且所述第二字段包括位图,其中所述位图的每个位用于指示是否分配所述N个RBG集合中的所指示的一个中的对应资源块(RB) 解释控制信息中的资源分配的第一场和第二场; 并使用控制信息接收数据。 RBG集合n(0≦̸ n
Abstract:
A method of transmitting pilot signals in a system which performs communication using two or more earners comprises transmitting first pilots and second pilots from at least one user equipment to a base station, the first and second pilots, which are transmitted from the at least one user equipment, being multiplexed by code division multiplexing, and the first and second pilots, which are transmitted from a specific user equipment, having different transmission powers, and transmitting data from the at least one user equipment to the base station depending on the first pilots and the second pilots. Since many UEs can transmit CQ pilots, exact channel estimation can be performed and thus communication efficiency can be improved.
Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-sub frame PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first Information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
The present invention provides for applying a cyclic redundancy check (CRC) to a data signal. The present invention includes attaching a first CRC to a first data signal block having a first length, segmenting the first data signal block attached with the first CRC into a plurality of second data signal blocks having a length shorter than the first length, respectively generating a second CRC for each second data signal block, and attaching the generated second CRC to the respective second data signal block. Moreover, the first CRC and second CRC may be generated from respectively different CRC generating polynomial equations.