Abstract:
A display panel and a fabricating method thereof, and a displaying device. The display panel includes: a driving backplane, a light-emitting-device layer provided on the driving backplane, and a packaging layer, a color-film layer and a light absorbing layer provided on one side of the light-emitting-device layer that is further away from the driving backplane; wherein the light absorbing layer is configured for absorbing light rays of a specific wavelength in external-environment light and in light rays emitted by the light-emitting-device layer; and the specific wavelength includes at least one of a wavelength between a red-light wave band and a green-light wave band, a wavelength between a green-light wave band and a blue-light wave band, a wavelength shorter than a blue-light wave band and a wavelength longer than a red-light wave band.
Abstract:
A light-adjusting structure, a method for manufacturing the light-adjusting structure, and a light-adjusting module are provided, which belong to the field of display technology, the light-adjusting structure includes: a first flexible substrate and a second flexible substrate oppositely arranged; a first transparent electrode and a second transparent electrode which are located between the first flexible substrate and the second flexible substrate; a first alignment layer located on a side of the first flexible substrate facing towards the second flexible substrate; a second alignment layer located on a side of the second flexible substrate facing towards the first flexible substrate; and a spacer and a dye liquid crystal layer which are located between the first alignment layer and the second alignment layer. The solutions of the present disclosure can meet light-adjusting requirements of vehicle windows.
Abstract:
A pixel control circuit and a control method thereof, and a display device. The pixel control circuit includes a control-signal output sub-circuit and a switch sub-circuit. An input terminal of the switch sub-circuit is electrically coupled to an output terminal of the control-signal output sub-circuit. An input terminal of the control-signal output sub-circuit is electrically coupled to a data line. The control-signal output sub-circuit is configured to: compare a voltage received by the data line with a reference voltage; and if a value of the voltage is equal to a value of the reference voltage, output a first control signal, otherwise output a second control signal. The switch sub-circuit is configured to be turned off under control of the first control signal and turned on under control of the second control signal. The reference voltage is a corresponding gamma voltage when the display panel is in a dark state.
Abstract:
Provided are a cholesteric liquid crystal composition, and a liquid crystal display panel including the composition, and their preparation methods. The cholesteric liquid crystal composition contains a block copolymer and a cholesteric liquid crystal, wherein the block copolymer has a block A including a chiral group M1 and a block B including a chiral group M2, and the cholesteric liquid crystal has at least two different pitches. The display panel includes an array substrate and a counter substrate placed by cell assembly, and a liquid crystal layer disposed between the array substrate and the counter substrate, wherein the liquid crystal layer comprises the cholesteric liquid crystal composition. The liquid crystal layer in the planar texture is capable of reflecting light of at least two wavelengths in the visible light region.
Abstract:
The present disclosure provides an organic electroluminescent display substrate and a manufacturing method thereof, and a display device. The organic electroluminescent display substrate includes a base substrate and a plurality of pixel units formed on the base substrate, the pixel unit including a light-emitting region and a non-light-emitting region. An organic electroluminescent structure is formed in the light-emitting region, the organic electroluminescent structure including a first electrode layer, an organic luminescent functional layer and a second electrode layer stacked on the base substrate, the second electrode layer including a first portion in the light-emitting region and a second portion in the non-light-emitting region, and a plurality of organic/inorganic material layers are provided between the second electrode layer and the base substrate, the plurality of organic/inorganic material layers including at least the organic luminescent functional layer in the light-emitting region and including a transparent material layer in the non-light-emitting regions of parts of pixel units.
Abstract:
An encapsulated structure of a light-emitting device, an encapsulating process thereof, and a display device comprising said encapsulated structure. The encapsulated structure of the light-emitting device comprises: a light-emitting device; and a protective layer of a sulfonate salt formed on a top electrode of the light-emitting device, the sulfonate salt having the following structure: wherein the cation X+ is Li+, Na+ or K+; and R is a substituent selected from the group consisting of unsubstituted alkyl groups having more than 5 carbon atoms, substituted alkyl groups having more than 5 carbon atoms, and alkoxyl groups having more than 5 carbon atoms.
Abstract:
Provided are a display control method and apparatus, a display apparatus, a storage medium, and a computer device. The display control method includes: detecting a picture frame to be output; and controlling a plurality of data lines to output, in a first mode, data signals for displaying the picture frame to be output in in response to detection that the picture frame to be output comprises a reference picture, wherein a signal polarity sequence in the first mode is different from a signal polarity sequence in a second mode, the second mode is an output mode of the plurality of data lines when the picture frame to be output does not comprise a reference picture, the signal polarity sequence is a sequence of polarities of data signals provided by all of the plurality of data lines according to an arrangement order of the plurality of data lines in a display apparatus. The present disclosure solves or improves various display defects caused by local or overall changes in the common voltage value by changing the output mode of data lines.
Abstract:
The present disclosure relates to a method of manufacturing an OLED device, an OLED device and a display panel. The method comprises: forming a first electrode layer over a substrate; forming a pixel define layer over the first electrode layer, the pixel define layer having a plurality of openings each corresponding to a light emitting region of each sub-pixel unit; performing a roughening process over a surface of the pixel define layer apart away from the first electrode layer; forming a hole injection layer covering the pixel define layer and the openings; and forming a hole transport layer, a light emitting layer, an electron transport layer and a second electrode layer in sequence over the hole injection layer at regions corresponding to the openings.
Abstract:
The present disclosure relates to a color filter substrate, a display panel and a display device. The color filter substrate includes a conductive layer located at a side of the color filter substrate where a color filter is located, a peripheral region of the conductive layer is provided with an isolation band configured to isolate external static electricity, the isolation band is provided with a breach, an inside portion of the conductive layer located inside the isolation band is provided with an extending portion configured to export static electricity, and the extending portion is extending to an edge of the color filter substrate through the breach.