Abstract:
An installation for increasing the usable range along the axial direction of a light source. The installation has a light source and an optical sensor. The light source generates a sense image. The optical sensor further has a sensor and a transparent panel. The sensor is responsible for detecting the image generated by the light source so that a sense image is created. The transparent panel is positioned between the sensor and the light source. A coating on the transparent panel modifies the light transparency along the axial direction of the light source such that light transparency is lower in the middle compared with the ends.
Abstract:
An installation for increasing the scanning range along the axial direction of the light source. The installation includes a light source and a transparent glass panel. The light source provides a light beam necessary for scanning a document. The transparent glass panel has a coating thereon for lowering light transparency near the mid-portion of the light axis relative to either end.
Abstract:
A latch-free button structure and its design method that can be applied to most electronic devices. The button includes a body, a wing plate, a positioning plate and a contact rod. The top end of the wing plate joins with the side edges of the button body and the positioning plate joins with the lower end of the wing plate. The contact rod is attached to the bottom section of the button body. If the height from the bottom of the contact rod to the contact point on the circuit board is B; the height from the bottom section of the button body to the surface of the housing is C; the height of the wing plate is A; the height of the sidewall of the button cover close to the button body is D and the height from the uppermost section of the button body to the top end of the wing plate is E, the value of A, B, C, D and E must follow the inequality relationships E−B>D, E−D>A, and D>A≧C≧B.
Abstract:
An installation for increasing the usable scanning range along the axial direction of a light source. The installation includes a linear light source and a light-channeling panel. The linear light source has a light axis whose brightness near the mid-portion is higher than the brightness level on either side. The light-channeling panel is adjacent to the linear light source and is capable of concentrating more light in the end sections rather than the mid-portion of the light axis. The light-channeling panel is made from a plurality of panels, each made from materials having different light transparencies. The light transparency of the light-channeling panel near the central section of the light axis is lower than the light transparency at the end sections of the light axis. Hence, after light from the linear light source has passed through the light-channeling panel, a band of light having a more homogenous brightness level than the linear light source is produced.
Abstract:
A scanning module includes a body casing having a light passage slit thereon, a plurality of reflecting mirrors located inside the body casing, a light-channeling apparatus, and a light guiding body. The light-channeling apparatus includes a first light-guiding tube positioned between a light source and a document, and a second light-guiding tube positioned between the document and the light passage slit. The light-guiding body is positioned inside the first light-guiding tube or the second light-guiding tube.
Abstract:
An installation for increasing the scanning range along the axial direction of the light source. The installation includes a light source and a transparent glass panel. The light source provides a light beam necessary for scanning a document. The transparent glass panel has a coating thereon for lowering light transparency near the mid-portion of the light axis relative to either end.
Abstract:
Embodiments of the claimed subject matter comprise a movable locking device for a scanner. In one embodiment, the movable locking device is used to affix a moving mechanical part inside a scanner, such as inside an optical chassis of the scanner. In this embodiment, the scanner comprises a platform, a lifting cover and a hinge set. The scanner uses the hinge set to allow the lifting cover to rotate relatively to the platform. The locking device includes a movable structure member and a buckling groove, in which the movable structure member includes a stopping piece and a holding rod used as the axis of rotation of the hinge set.
Abstract:
A compensation apparatus for image scan, applied to an optical scanner with a platform, on which an object to be scanned is disposed. The optical scanner has a photosensitive apparatus with a set of scan photosensitive devices and a storage apparatus. When the object is scanned by the set of scan photosensitive devices, a scanned image is obtained and saved in the storage apparatus temporarily. The compensation apparatus has a set of calibration boards, a set of calibration photosensitive devices and an image processor. The set of calibration boards has two calibration boards located at two sides of the platform. The set of calibration photosensitive devices is located at two sides of the set of scan photosensitive device. The image processor is used to extract and compare the calibrated image, so as to adjust the scanned image.
Abstract:
A compensation apparatus for image scan, applied to an optical scanner with a platform, on which an object to be scanned is disposed. The optical scanner has a photosensitive apparatus with a set of scan photosensitive devices and a storage apparatus. When the object is scanned by the set of scan photosensitive devices, a scanned image is obtained and saved in the storage apparatus temporarily. The compensation apparatus has a set of calibration boards, a set of calibration photosensitive devices and an image processor. The set of calibration boards has two calibration boards located at two sides of the platform. The set of calibration photosensitive devices is located at two sides of the set of scan photosensitive device. The image processor is used to extract and compare the calibrated image, so as to adjust the scanned image.
Abstract:
An optical scanner is provided with a carrier, a casing, a driving unit and a transmission unit. The carrier has a connecting unit and an optical system mounted thereon. The casing has a guiding rail formed as integral unit on the interior wall. The guiding rail has at least a fastener for latching onto the connecting unit of the carrier. The transmission unit links up the driving unit and the carrier. The driving unit drives the transmission unit and then the transmission unit pulls the carrier along the guiding rail through the linkage between the connecting unit and the fastener.