Abstract:
A method includes receiving image data, generating a low-pass image and a high-pass image from the image data, applying dynamic range compression to the low-pass image and not the high-pass image, and adding the high-pass image to the low-pass image after dynamic range compression to create an output image.
Abstract:
Presented invention describes the approach for manufacturing of the pixels for solid state imaging devices possessing a photon detection efficiency superior to those currently available. Formation of a bipolar junction transistor (BJT) in close vicinity of the photodiode in such a way that accumulation area of the photodiode also represents its collector region allows for conversion of the photo carriers which cannot be accumulated in a regular 4T pixel, usually holes, into complimentary type carriers, usually electrons, that can be stored, read out and converted to electric signal. This transistor can be formed, for example, by creating a n+ region inside the surface p layer of the pinned photodiode. In the described structure the accumulation region is isolated from the surface and operation of the new pixel is otherwise similar to the 4T pixel operation. As a result, both main advantages of 4T pixel: low dark current and kTC noise cancellation are, therefore, preserved.
Abstract:
An imaging device and processes to provide image stabilization by controlling analog gain and integration time. Analog gain and integration time for images are determined by comparing an image in various frames, whether full frames or hidden frames, where the image is provided with differently set analog gain and integration time settings to determine settings for stabilized image capture.
Abstract:
Embodiments of an imaging system and method for generating video data with edge-aware interpolation are generally described herein. Other embodiments may be described and claimed. In some embodiments, an edge-aware demosaicing process is performed on image sensor data to generate pixel-edge data, and video output data may be generated by adding the pixel-averaged data to difference data weighted by a correction factor. The difference data represents a difference between pixel-averaged data and the pixel-edge data. The correction factor may be proportional to an amount of edge content in the image sensor data.
Abstract:
A method and apparatus are disclosed for image processing using dynamic assessment of image line data to select a compression technique for compressing the image line data prior to storage in a line buffer used for an image processing operation. Compressing the image line of data prior to storage in the line buffer permits reduction in the size of the line buffer. The compressed image data may be decompressed prior to the image processing.
Abstract:
A method, apparatus, and system for continuously focusing an imaging device in a video mode is disclosed. An autofocus process is used to adjust the distance between an image sensor and a lens in the imaging device based on one or more hidden frames that are not output as part of the video frame output. The hidden frames can have a smaller resolution than the output frames and can be captured under different conditions than the video output frames.
Abstract:
Embodiments of an imaging system and method for generating video data with edge-aware interpolation are generally described herein. Other embodiments may be described and claimed. In some embodiments, an edge-aware demosaicing process is performed on image sensor data to generate pixel-edge data, and video output data may be generated by adding the pixel-averaged data to difference data weighted by a correction factor. The difference data represents a difference between pixel-averaged data and the pixel-edge data. The correction factor may be proportional to an amount of edge content in the image sensor data.
Abstract:
A method includes receiving image data, generating a low-pass image and a high-pass image from the image data, applying dynamic range compression to the low-pass image and not the high-pass image, and adding the high-pass image to the low-pass image after dynamic range compression to create an output image.
Abstract:
A method and apparatus for reducing false color artifacts in digital images. Aperture correction and color saturation values are determined for a portion of an image surrounding a subject pixel. A color attenuation value is determined based at least in part on the aperture correction and color saturation values. A color value of the subject pixel is adjusted by an amount based at least in part on the color attenuation value. In one exemplary embodiment, the method and apparatus operate in the YUV color space and adjust U and V values of the subject pixel proportionally to the color attenuation value.
Abstract:
An imaging device and processes to provide image stabilization by controlling analog gain and integration time. Analog gain and integration time for images are determined by comparing an image in various frames, whether full frames or hidden frames, where the image is provided with differently set analog gain and integration time settings to determine settings for stabilized image capture.