Abstract:
A HARQ frame data structure and methods of transmitting and receiving with HARQ in systems using blind detection. In one embodiment, a method of transmitting over a channel using HARQ includes transmitting a first frame containing data toward a blind detection receiver, and transmitting a second frame containing at least a portion of the data and information about the first frame toward the blind detection receiver.
Abstract:
Systems, methods, and apparatuses for providing waveform adaptation are provided. In an example, a method is provided for identifying a plurality of candidate waveforms, and selecting one of the candidate waveforms for data transmission. The candidate waveforms may be identified in accordance with one or more criteria, such as a transmission capability of the transmitting device, a reception capability of the receiving device, a desired Peak-to-Average-Power-Ratio (PAPR) characteristic, adjacent channel interference (ACI) rejection requirements, spectrum localization requirements, and other criteria. The waveform selected for data transmission may be selected in accordance with one or more waveform selection criteria, such as traffic characteristic, application types, etc.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons; such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Abstract:
A method for generating a virtual codebook of low peak to average power ratio (PAPR) sequences includes generating a plurality of low PAPR combination block sequences, with each low PAPR combination block sequence including at least one of a plurality of sparse codebook, and applying time domain hopping to the plurality of low PAPR combination block sequences, thereby producing a virtual codebook. The method also includes storing the virtual codebook.
Abstract:
Embodiments are provided herein for increasing low density signature space for multiplexed transmissions for a plurality of users. The embodiments include generating a virtual signature using a combination operation on a plurality of basic signatures. The generated virtual signatures are provisioned as basic resource units (BRUs) for transmissions for corresponding users. The combination operation is a row-wise or column-wise permutation for combining, in each of the virtual signatures, rows or columns of corresponding basic signatures. The rows or columns represent sequences of frequency bands at one time interval or sequences of allocated time intervals at one frequency band. Alternatively, the combination operation is intra-basic resource unit (BRU) hopping. The embodiments also include generating a plurality of BRU sets comprised of virtual signatures. Each of the BRU sets is provisioned for a corresponding user.
Abstract:
A method for generating a virtual codebook of low peak to average power ratio (PAPR) sequences includes generating a plurality of low PAPR combination block sequences, with each low PAPR combination block sequence including at least one of a plurality of sparse codebook, and applying time domain hopping to the plurality of low PAPR combination block sequences, thereby producing a virtual codebook. The method also includes storing the virtual codebook.
Abstract:
A method for generating a codebook includes applying a unitary rotation to a baseline multidimensional constellation to produce a multidimensional mother constellation, wherein the unitary rotation is selected to optimize a distance function of the multidimensional mother constellation, and applying a set of operations to the multidimensional mother constellation to produce a set of constellation points. The method also includes storing the set of constellation points as the codebook of the plurality of codebooks.
Abstract:
Methods and systems relating to de-centralized communication resource sharing and access for mobile nodes, such as vehicles, in a vehicle to vehicle ad hoc network are provided. A method includes receiving, at a first node, information indicating a position of a second node in the network. The first node may claim a communication channel in the network based on a position of the first node relative to the position of the second node. The relative positions of the nodes may be based on the distance of each node to a reference location. The nodes may be in a first zone in a virtual grid in the network, and the claimed communication channels may be channels of the first zone. Channels from other zones may also be claimed by nodes in the first zone as secondary channels.
Abstract:
Disclosed herein are an active resource unit detector and a method of use thereof. An embodiment method of detecting active resource units among a plurality of potential resource units includes receiving an aggregate signal containing active pilots transmitted over the active resource units via random access transmissions. The active pilots are then detected and respectively associated with the active resource units according to a pilot-to-resource unit mapping.
Abstract:
A method for link adaptation in a wireless communications system includes deriving a range of post-processing signal to interference plus noise ratio (SINR) values for a communications channel using a first layer in the communications channel available for communications, the range of post-processing SINR values derived in accordance with a channel estimate of the communications channel, interference information about the communications channel, and signature information. The method also includes selecting a modulation and coding scheme (MCS) in accordance with the range of post-processing SINR values to establish a first channel quality index (CQI) vector, adjusting the first CQI vector in accordance with information regarding operating conditions in the wireless communications system to produce an adjusted CQI vector, and transmitting the adjusted CQI vector to a second communications device.