Abstract:
An extreme ultraviolet light generation apparatus may include a target supply unit supplying a target to a plasma generation region in a chamber, a laser system emitting first laser light having a polarization direction deflected in one direction and second laser light to generate a secondary target that is the target diffused by irradiating the target with the first laser light from a direction perpendicular to a travel axis of the target and to generate extreme ultraviolet light by irradiating the secondary target with the second laser light, a polarization direction adjustment unit arranged on an optical path of the first laser light and configured to adjust the polarization direction of the first laser light, a secondary target observation unit configured to observe a distribution of the secondary target, and a processor controlling the polarization direction adjustment unit based on an observation result of the secondary target observation unit.
Abstract:
An extreme ultraviolet light generation system according to an aspect of the present disclosure includes a first actuator that changes a travel direction of prepulse laser light to be output from a first optical element arranged on an optical path of the prepulse laser light between a prepulse laser device and a beam combiner, and a second actuator that changes irradiation positions of the prepulse laser light and main pulse laser light to be output from a light concentrating optical system, a plurality of sensors that detect light radiated from a predetermined region by a target being irradiated with the main pulse laser light, and a controller. Here, the controller controls the first actuator so that an evaluation value calculated from output of the plurality of sensors approaches a target value, and thereafter, controls the second actuator so that the evaluation value approaches the target value.
Abstract:
An extreme ultraviolet light generating apparatus includes: EUV light sensors configured to measure energy of extreme ultraviolet light from mutually different directions, the extreme ultraviolet light being generated by applying laser light to a target supplied to a predetermined region in a chamber; an application position adjusting unit configured to adjust an application position of the laser light to the target supplied to the predetermined region; and a controller configured to control the application position adjusting unit such that a centroid of the extreme ultraviolet light becomes a targeted centroid, the centroid of the extreme ultraviolet light being specified from measurement results of the EUV light sensors, the controller controlling the application position adjusting unit such that the application position is scanned in accordance with reference scan points mutually different in position, and calibrating the targeted centroid based on the measurement results acquired for the reference scan points.
Abstract:
The extreme ultraviolet light generating apparatus includes a target supply unit to output a target, a driver laser to output a driver laser beam with which the target is irradiated, a guide laser to output a guide laser beam, a beam combiner to have optical paths of the driver laser beam and the guide laser beam substantially coincide with each other and output these beams, a first optical element including a first actuator to adjust an optical path of the driver laser beam to be incident on the beam combiner, a second optical element including a second actuator to adjust an optical path of the guide laser beam to be incident on the beam combiner, a sensor to detect the guide laser beam outputted from the beam combiner to output detected data, and a controller to receive the detected data, control the second actuator based on the detected data, and control the first actuator based on an amount of controlling of the second actuator.
Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber in which extreme ultraviolet light is generated from plasma generated by irradiating a target supplied into the chamber with a laser beam; a target generator that supplies the target into the chamber as a droplet; a droplet measurement unit that measures the droplet supplied from the target generator into the chamber; and a shielding member that shields the droplet measurement unit from electromagnetic waves emitted from the plasma, the droplet measurement unit including: a light source that emits continuous light to the droplet; a window provided in the chamber to allow the continuous light to transmit therethrough; and an optical sensor that receives the continuous light via the window. The shielding member includes a shielding body provided on the chamber side with respect to the window and configured to cover an optical path of the continuous light.
Abstract:
There is provided an extreme ultraviolet light generating system. The extreme ultraviolet light generating system may include: a laser apparatus configured to provide pulsed laser light inside a chamber in which EUV light is generated; an optical shutter disposed on an optical path of the pulsed laser light; and a controller configured to open or close the optical shutter, based on a generation signal supplied from an external unit, the generation signal instructing generation of the EUV light.
Abstract:
A control method for a target supply device may employ a target supply device, provided in an EUV light generation apparatus including an image sensor, that includes a target generator having a nozzle and configured to hold a target material and a pressure control unit configured to control a pressure within the target generator, and the method may include outputting the target material in the target generator from a nozzle hole in the nozzle by pressurizing the interior of the target generator using the pressure control unit, determining whether or not a difference between an output direction of the target material outputted from the nozzle hole that is detected by the image sensor and a set direction is within a predetermined range, and holding the pressure in the target generator using the pressure control unit until the difference falls within the predetermined range.