Abstract:
A sensor panel of an electronic cassette includes detection pixels each for outputting a dose signal corresponding to a dose of X-rays, an irradiation start judging section for judging whether or not X-ray irradiation has been started based on the dose signal, and an AEC section for judging whether or not an accumulated dose of X-rays has reached a target dose based on the dose signal. A gain setting section sets a gain of an integration amplifier in the case of using the irradiation start judging section lower than that in the case of using the AEC section.
Abstract:
A communication section having a relatively high communication speed is used for communicating a detection signal or an emission stop signal between a source control device and an electronic cassette. The detection signal is outputted from a detection pixel of the electronic cassette. The emission stop signal depends on a comparison result between an integrated value of the detection signal and an emission stop threshold value. On the other hand, a wireless communication section having a lower communication speed than that of the detection signal and the emission stop signal is used for communicating image data and the like between the electronic cassette and a console.
Abstract:
An AEC section of an electronic cassette includes a measurement area setting circuit for setting a measurement area in an imaging surface. The measurement area setting circuit is switchable between a specified area mode and an automatic area setting mode. In the specified area mode, a first measurement area is set up in a position predetermined in accordance with a body part to be imaged. In the automatic area setting mode, a second measurement area is set up based on the distribution of an X-ray dose measured by measuring pixels. X-ray emission time is shortened in the specified area mode, because the setting of the first measurement area is quickly performed. The automatic area setting mode eliminates the need for troublesome positioning between a patient and an FPD.
Abstract:
A medical image acquisition apparatus including: a biopsy apparatus; an imaging table that is used to capture an image of a living body disposed on an imaging surface with an imaging apparatus; a projector that projects the image; and at least one processor, wherein the processor performs control of projecting relevant information associated with each execution stage of a biopsy that is performed on the living body using the biopsy apparatus, from the projector toward the imaging surface of the imaging table for each execution stage.
Abstract:
An imaging control unit performs conventional scanning, which directs a rotation mechanism to rotate a radiation source and a radiation detector without changing a positional relationship between a subject, and the radiation source and the radiation detector in a rotation axis direction, directs the radiation source to emit radiation whenever the radiation source and the radiation detector are rotated by a preset angle, and directs the radiation detector to output a projection image, at a plurality of height positions along the rotation axis direction. The image processing unit generates a tomographic image on the basis of the projection images obtained at the plurality of height positions.
Abstract:
An average offset image is acquired without irradiation of a radiation. A first image is acquired when a first time elapses from continuous irradiation with the radiation for imaging a subject on a pixel region. A second image is acquired when a second time longer than the first time elapses from an end of the continuous irradiation. The irradiation with the radiation for imaging the subject is performed on the pixel region after an elapse of the second time from the end of the continuous irradiation and a pixel signal from the pixel region is read out to acquire a radiographic image. An offset image representing an offset component and an afterimage representing an afterimage component according to a time of the continuous irradiation, the first time, the second time, and a defined time are generated based on the first image, the second image, and the average offset image.
Abstract:
A CT apparatus includes an annular frame that rotates around a subject positioned in a bore, three columns that hold the frame to be rotatable and movable up and down in a vertical, an elevation mechanism that moves up and down the frame, and a rotation mechanism that rotates the frame. A radiation source and a radiation detector are attached to the frame at positions facing each other. The frame has a width smaller than a width of the radiation source and the radiation detector in a height direction over a whole periphery. An imaging controller performs control for operating the elevation mechanism in response to a return instruction from an operator to move the frame to a retreat height position set at a position of a highest point in an elevation range of the frame on an upper end side of the columns. The imaging controller performs control for operating the rotation mechanism in response to the return instruction from the operator to rotate the frame to a position of 60° that is a first rotation position where the radiation source overlaps the columns.
Abstract:
In an image analysis device, an image analysis method, and a non-transitory computer-readable recording medium, it is determined whether a radiographic image is captured by rocking a rocking imaging grid. The image analysis device includes: a radiographic image acquisition section; a dosage data acquisition section that acquires dosage data indicating, in a time-series manner, a dosage of radiation rays exposed to a specific position in an imaging area in a specific period; and a determining section that determines whether the dosage data has a first feature indicating a dosage variation as a plurality of radiation absorbing bodies and a radiation transmitting body disposed between adjacent radiation absorbing bodies pass through a space between the specific position and a radiation source, and determines that the radiographic image corresponding to the dosage data determined to have the first feature is a rocking grid use image captured by rocking a rocking imaging grid.
Abstract:
A control unit of a console performs a control process of displaying a plurality of images predetermined from at least one of a first radiographic image or a second radiographic image as a simple image, a bone part ES image which is a difference image between the first radiographic image and the second radiographic image and in which a bone tissue is highlighted, a soft part ES image which is a difference image between the first radiographic image and the second radiographic image and in which a soft tissue is highlighted, and a DXA image on a display unit while switching the images and a control process of displaying a derivation result of the bone density and a derivation region on the display unit.
Abstract:
A control unit acquires first radiographic image data and second radiographic image data and derives bone density from an image of a derivation region of a DXA image which is a difference image between a first radiographic image and a second radiographic image. Then, the control unit derives an evaluation value of the accuracy of derivation of the bone density, on the basis of at least one of the first radiographic image, the second radiographic image, and a bone part ES image, a soft part ES image, and a DXA image which are generated using the first radiographic image and the second radiographic image.