Abstract:
In an image analysis device, an image analysis method, and a non-transitory computer-readable recording medium, it is determined whether a radiographic image is captured by rocking a rocking imaging grid. The image analysis device includes: a radiographic image acquisition section; a dosage data acquisition section that acquires dosage data indicating, in a time-series manner, a dosage of radiation rays exposed to a specific position in an imaging area in a specific period; and a determining section that determines whether the dosage data has a first feature indicating a dosage variation as a plurality of radiation absorbing bodies and a radiation transmitting body disposed between adjacent radiation absorbing bodies pass through a space between the specific position and a radiation source, and determines that the radiographic image corresponding to the dosage data determined to have the first feature is a rocking grid use image captured by rocking a rocking imaging grid.
Abstract:
A radiographic imaging system includes plural radiographic imaging devices that image a same subject. The radiographic imaging device includes: a radiation detector; a detection unit that detects whether or not application of the radiation has been started based on electrical signals indicating detection results of sensors that detect the application of the radiation and that are disposed in correspondence to the radiation detector; a determination unit that determines whether or not noise is superimposed on the electrical signals after the detection unit has detected whether or not the application of the radiation has been started; and a communication unit that is connected to another radiographic imaging device and transmits to and receives from the other connected radiographic imaging device a detection result signal indicating the detection result of the detection unit and a determination result signal indicating the determination result of the determination unit.
Abstract:
Provided are a radiography system, a radiography method, a radiography program, and a body thickness estimation apparatus that can estimate the body thickness of a subject using each of radiographic images generated by irradiation with radiations having different energy levels.A radiography system includes a radiography apparatus including two radiation detectors and a console including an estimation unit that estimates the body thickness of a subject on the basis of the ratio of pixel values in a region, which corresponds to a soft tissue of the subject and is a corresponding region of radiographic images generated by the two radiation detectors irradiated with radiations having different energy levels, and correspondence relationship information in which the ratio and the body thickness are associated with each other.
Abstract:
Disclosed is a technique capable of enhancing usability of a radiographic image capturing apparatus, system, control method of the radiographic image capturing apparatus and a non-transitory computer readable recording medium recorded with a control program, for a user. A radiographic image capturing apparatus includes: an I/F unit and an imaging control unit that function as a communication unit that selectively performs communication with any one of a portable information terminal and a console which are plural control apparatuses that have different image processing capacities with respect to a radiographic image and respectively perform a control relating to capturing of the radiographic image; and an imaging control unit that functions as a selection unit that selects any one of plural imaging modes predetermined with respect to the capturing of the radiographic image according to the image processing capacity of the control apparatus that performs communication with the communication unit.
Abstract:
A communication section having a relatively high communication speed is used for communicating a detection signal or an emission stop signal between a source control device and an electronic cassette. The detection signal is outputted from a detection pixel of the electronic cassette. The emission stop signal depends on a comparison result between an integrated value of the detection signal and an emission stop threshold value. On the other hand, a wireless communication section having a lower communication speed than that of the detection signal and the emission stop signal is used for communicating image data and the like between the electronic cassette and a console.
Abstract:
An X-ray imaging apparatus has an electronic cassette, in which an FPD device receives X-rays applied by an X-ray source to a body, and stores charge according to a radiation dose of the X-rays, to create an image. A control unit controls the FPD device. A radiation sensor detects the radiation dose to be used for controlling the FPD device. A magnet as fastening device secures the radiation sensor removably in a radiation path between the X-ray source and the body. Also, an evaluation unit recognizes a start and end of application of the X-rays according to a dose signal from the radiation sensor, for the control unit to control the FPD device. A flexible support arm is disposed between the radiation sensor and the magnet, for keeping the radiation sensor in a changeable position relative to the magnet.
Abstract:
A radiography system includes: a radiography apparatus including a first radiation detector and a second radiation detector which is provided so as to be stacked on the side of the first radiation detector from which the radiation is transmitted and emitted; and an integrated control unit that specifies a predetermined time related to the emission of the radiation, on the basis of a first detection result that is a detection result of a predetermined time related to the emission of the radiation using a first electric signal output from the first radiation detector and a second detection result that is a detection result of a predetermined time related to the emission of the radiation using a second electric signal output from the second radiation detector.
Abstract:
In capturing an image of a grid by an image detector, a measurement pixel that is not in the position of a specific point having a maximum or minimum value of an output signal is referred to as a first measurement pixel, and a measurement pixel that is in the position of the specific point is referred to as a second measurement pixel. The disposition of the first and second measurement pixels are determined so as to satisfy the following condition: fG/fN≠odd number, wherein fG is a grid frequency and fN is a Nyquist frequency of pixels; and in shifting the grid C times by one pixel, the number of the first measurement pixels is larger than that of the second measurement pixels at any time in the range of a cycle C of a repetition pattern appearing in the image.
Abstract:
A detection panel has a plurality of pixels for accumulating electric charge by receiving X-rays, and a plurality of detection pixels for detecting an X-ray dose in an imaging surface. The detection pixels are disposed periodically with leaving space. A grid, which has X-ray absorbing portions and X-ray transmitting portions alternately and periodically arranged in a first direction, is disposed in a position opposed to the imaging surface. Since an arrangement period of the detection pixels in the first direction is different from an arrangement period of the X-ray absorbing portions, an output value of each detection pixel is distributed and hence the average of the output values has a reduced variation range.
Abstract:
In an image analysis device, an image analysis method, and a non-transitory computer-readable recording medium, it is determined whether a radiographic image is captured by rocking a rocking imaging grid. The image analysis device includes: a radiographic image acquisition section; a dosage data acquisition section that acquires dosage data indicating, in a time-series manner, a dosage of radiation rays exposed to a specific position in an imaging area in a specific period; and a determining section that determines whether the dosage data has a first feature indicating a dosage variation as a plurality of radiation absorbing bodies and a radiation transmitting body disposed between adjacent radiation absorbing bodies pass through a space between the specific position and a radiation source, and determines that the radiographic image corresponding to the dosage data determined to have the first feature is a rocking grid use image captured by rocking a rocking imaging grid.